
Exploring Historical Document Collections
with HistoRadar

Alberto González Palomo1

Abstract. We present our use of Natural Language Processing tech-
niques to guide the exploration of historical document collections
and assist in note taking. Our application is polished enough for ac-
tual use by historians without special knowledge of NLP or computer
programming.

We provide ready-to-use Java executable files for mainstream op-
erative systems (Linux, Microsoft Windows, MacOS X), and the
source code is freely available under the General Public License[5].

1 INTRODUCTION
Digitisation of historical document collections has enabled historians
to search in their contents efficiently, provided that one knows before
hand what to look for.

The next step is to use the increasing computing power available
to improve the task of finding interesting topics without the time-
consuming and distracting task of reading the whole content first.

One example of using Natural Language Processing techniques to
improve discovery of interesting content is query expansion, where
the search is extended to terms related to the ones given by the user.
With our application we seek to go beyond that, to the point where
the computer itself suggests search terms in a graphical way.

In our discussions with historians we identified the following basic
workflow when working with a document collection:

1. Read documents in the collection
2. Collect interesting topics
3. Snowball method:

(a) Read again, collecting notes about selected topics

(b) Add findings to ”snowball”

(c) Follow leads

(d) Iterate

We use Natural Language Processing to identify possible topics
that are displayed in a custom user interface using a “radar screen”
metaphor, and provide a user interface for one-click annotation into
the snowball document.

The first version of this application was implemented as part of
the seminar “Unlocking the Secrets of the Past: Text Mining for His-
torical Documents (WS 2009/10)” at the University of Saarland, and
documented in the report [7]. It is now maintained and developed
further by this author.

The source collection we chose was the British Cabinet Papers,
made available by the British National Archives at http://www.
nationalarchives.gov.uk/cabinetpapers/

1 Email: alberto@sentido-labs.com

Visiting that web page illustrates the motivation for our work:
there is a search form that allows searching for keywords and re-
stricting the date range, but where to start? What keywords could we
expect to find in those papers? After all, unexpected findings would
be the most interesting.

2 SOURCE TEXT ACQUISITION
The Cabinet Papers are in PDF format, and include both the scanned
image and their own automatic transcription using OCR. We ex-
tracted the text transcription and worked with the resulting text files.

It is interesting to note that the oldest documents dating from 1910
were typeset and printed for the British Government so they had good
quality, while more recent documents were often typewritten, oc-
casionally with mistakes crossed-over and hand-written annotations
and corrections which affected the OCR negatively, with the result of
older documents being actually easier to work with than recent ones
contrary to our expectations.

Most files contained several actual documents, so we needed to
split them. To find the first line of each collated document, we took
the notice they have in their first pages:

This Document is the Property of
His Britannic Majesty Government

Due to the high incidence of OCR errors, we took a probabilistic
approach for matching that line of text. Many OCR errors are due
to local damage to the document, such as faded ink, stains, or inter-
ference from annotations or stamps. Therefore we assume that the
error rate is not uniform in the notice and some parts of it will match
literally. One example of an actual line with errors is the following:

*iTfois Document is the Property of
Eis Britannic MajestyˆGoyernmˆtX

We build several regular expression patterns that match different
parts of the notice, words in this case: “\b” means that the word
begins or ends at that point, “.*” that anything can go there, and
“ +” means one or more spaces.

\bthis\b.*\bdocument\b.*\bproperty\b
\bdocument\b.*\bproperty\b.*\bhis\b +\bbritannic\b
\bproperty\b.*\bbritannic\b +\bmajesty\b
\bdocument\b.*\bproperty\b.*\bmajesty\b
\bthis\b +\bdocument\b.*\bgovernment\b
\bproperty\b +\bof\b.*\bgovernment\b

We compute the match score by counting the patterns that match,
and dividing by the total number of patterns n to normalize the result

http://www.nationalarchives.gov.uk/cabinetpapers/
http://www.nationalarchives.gov.uk/cabinetpapers/


to the interval [0, 1], and if the normalized score surpasses our thresh-
old, we consider it a match. In this case a threshold of 1/n (triggered
when the score is greater but not equal to it) seemed to work fine.

The notice we use as marker was sometimes repeated in the first
pages of a document, so we also consider the size of the candidate
text: if it is shorter than a certain limit (60 lines in this case), we
assume it is not a document but a single page and we concatenate it
to the next.

From 178 files we separated 2395, which works out to an average
of around 16 documents per file but there was a high variance with
some files only yielding one or two documents, and others up to 50.

The results we mention in this paper correspond to a small sub-
set of the collection for practical purposes: it is possible to load the
whole collection, but processing it takes a relatively long time: 22
seconds vs. 91 minutes. This subset is the first 66 documents as plain
text files with a total of 1.6 MBytes and 258061 “words” as measured
by the wc utility.

Collection subset
Small Complete Factor

Size 1.16 MB 131.61 MB 113
Number of documents 66 2395 36
Number of “words” 258,061 29,407,687 114
Time 22 s 90:53 s 248

Table 1. Processing time with the Stanford NER engine in a computer with
CPU Intel Core2Duo T9600 (2.8 GHz) and 4 GB of RAM.

3 METADATA EXTRACTION
We need at least the date of the document to sort the collection
chronologically. The metadata annotations in the source PDF files
reflects their scanning date, not the date of the original document, so
we extract that information from the OCR text as described in the
report[3].

First we needed to correct some of the OCR errors. The main prob-
lem affecting the dates is spaces inserted between single characters
(digits or letters) due to kerning (glyph separation). We correct for
that with regular expression substitutions in five steps:

1. Remove spaces between single characters.
2. Split words with capital letters on them.
3. Separate numbers from words.
4. Remove spaces between abbreviations (identified by ending with

a dot “.”) and the dot.
5. Separate abbreviations from the next word.

We then look for the dates, take the first one as the one of the
document, and normalize it.

Figure 1. Document header with location and date information.

Figure 1 shows a typical document header where we have high-
lighted the location and date.

Dates in this collection have a variety of forms, and is further com-
plicated by the OCR errors. For instance, these are some we found:

Tuesday, 7th August, 1 9 4 5 , at 5 - 0 p.m. Street,
S.W. 1
Thursday, lst. November, 1 9 4 5 , at 1 1 a.m.
Tuesday, lst January, 1 9 4 6 , at 1 1 a.m.
December 9, 1916, at 11-30 A.M.
March 1 , 1 9 1 7 , at 1 1 - 3 0 A . M .
Tuesday, June 5, 1917, at 11*30 A.M.
Tuesday, January 1 , 1 9 1 S , at 1 1 * 3 0 A.M.
Monday, April .1, 1913, at 1130 A.M.
Monday, July 1, 1018, at 12 noun.
Octdber 1, 1913, at 1T30 A.M.
Thursday,3 , 1 9 1 9 , at 12
Tuesday, July 1 , 1 9 1 9 , at 1 1 * 3 0 A.M.
Friday, June 8, 1917, at IF..30 a.m.
Friday, August 15, 1919, at 1 1 3 0 A.M
Friday, June 8, 1917, at IF..30 a.m.
Tuesday, January 2, 1940, at 11 A . M
WEDNESDAY, 21st JUNE, 1939, at 10030 a,m
MONDAY, 24th APRIL, 1939 at 5.6 p.m
WEDNESDAY, 15th MARCH, 1939, at 11.0 a.m
WEDNESDAY, 22nd MARCH, 1959, at 10.0 a.m

After applying the correction steps mentioned above, we get:

Tuesday, 7 th August, 1945 , at 5 - 0p.m. Street,
S.W. 1
Thursday, lst. November, 1945 , at 11a.m.
Tuesday, lst January, 1946 , at 11a.m.
December 9, 1916, at 11-30 A.M.
March 1 , 1917 , at 11 - 30A . M.
Tuesday, June 5, 1917, at 11*30 A.M.
Tuesday, January 1 , 191S , at 11 * 30A.M.
Monday, April . 1, 1913, at 1130 A.M.
Monday, July 1, 1018, at 12 noun.
Octdber 1, 1913, at 1T30 A.M.
Thursday,3 , 1919 , at 12
Tuesday, July 1 , 1919 , at 11 * 30A.M.
Friday, June 8, 1917, at IF.. 30 a.m.
Friday, August 15, 1919, at 1130A. M
Friday, June 8, 1917, at IF.. 30 a.m.
Tuesday, January 2, 1940, at 11 A. M
WEDNESDAY, 21st JUNE, 1939, at 10030 a,m
MONDAY, 24th APRIL, 1939 at 5. 6p. m
WEDNESDAY, 15th MARCH, 1939, at 11. 0a. m
WEDNESDAY, 22nd MARCH, 1959, at 10. 0a. m

Adapting this to other collections is simply a matter of modifying
the regular expressions used.

4 EVALUATION OF NER ENGINES
Apart from our own hand-crafted gazetteer, we integrated two dif-
ferent external NER engines that are independent of the collection
content.

Figure 2. The Named Entity Recognition engine to use can be selected in
the “NER” menu.

The initial one is the built-in “simple regexp” one we imple-
mented with regular expressions. It has a hard-coded gazetteer that
just searches for occurrences of some words like a few country names
and some job titles we found in the Cabinet Papers. It would be easy



to read that list from a file instead of having it fixed in the source
code, but preparing that file would still require prior knowledge about
the collection contents which defeats the main purpose of our tool so
we prefer to focus on the collection-independent NER engines.

The result of the Named Entity Recognition is a list of annotated
segments. Other NER engines use similar data structures that we
translate to our own so that all of them present a common interface
to our application.

In the screenshot (Figure 2) we have selected the Stanford Nat-
ural Language Processing Group’s Conditional Random Field NER
engine [4]. The other one we have integrated so far is OpenNLP’s
Maximum Entropy classifier [1]. Details about this can be found in
the NER section of the report[2].

Figure 3. Number of entities found by each NER engine, and overlap be-
tween them.

In the collection subset, Stanford’s CRF found 3373 entities and
OpenNLP’s Maxent found 881. Of those, there were 469 entities in
common (overlap).

We then removed manually those that were obvious false positives
and arrived at the figures shown in Figure 3. Most of those false posi-
tives were due to the OCR errors, like “Theregulationofthequantity”,
“Strictobservanceof” and “Bocriiioeat Is fes Property of His Bsita-
miic Majesty”. A few were attributable to the NER engine’s limita-
tions: “APPENDIX”, “APPENDIX I. Draft Telegram”, etc.

Figure 4. Comparison of Named Entities found by OpenNLP’s Maxent
(left) and Stanford’s CRF (right).

Figure 4 shows some of the differences between the Named En-
tities found by each engine, displayed with a standard text diff ap-

plication called “Kompare”. The pink areas are substitutions, where
some lines in the first file occupy the place of other lines in the sec-
ond file. Green areas indicate lines from the first file that are missing
in the second, and conversely blue areas are places where lines from
the second file are missing in the first.

These results indicate that the NER engines we tried are more con-
cerned with precision (fraction of entities found that are correct) than
with recall (fraction of entities in the collection that were found).

For this application however the biggest issue is the false negatives
(missed entities) as can be seen in Figure 5, where “War Cabinet”,
“French Government”, “Italian Conference”, “Chief of the Imperial
General Staff”, “the Admiralty”, “the Greeks” are missed. This hap-
pens across the collection.

5 WORKFLOW AND USER INTERFACE
A document collection is built by putting the plain text version of
the documents to be studied into a directory/folder. It can then be
loaded with the menu option ”File→Load collection”, selecting that
directory. All files with names ending in ”.txt” will be loaded by the
application.

The typical workflow would be loading the collection, loading the
snowball document and working on it, then at the end of the session
the snowball is saved to continue later. There is no need to keep an-
other application open to write down notes as it can be done directly
in HistoRadar.

The snowball can then be imported into a normal word processor
(most current ones support importing HTML documents) to form the
base of an essay.

Figure 5. Appearances of “Sarrail” are the bright points in the horizontal
line. Points in the vertical line represent different Named Entities in the same
document.

The interface is split in two main parts: left is the document area,
and right is the radar area.

The radar shows a high-level view of the whole document collec-
tion, and is the method used for navigating it. The “radar screen”
represents all entities found in the documents using Named Entity
Recognition. The horizontal axis represents time, with the time-
line above the radar screen. The vertical axis represents the entities.
Therefore, vertical lines are synchronic slices, and horizontal ones
diachronic.

Clicking on the radar screen (Figure 5) loads the corresponding
document, and copies the entity at the point to the search box which



selects its first appearance and scrolls the document view to show it.
The arrow buttons next to the search box select the next and previous
appearance respectively.

In the document area there are two documents in tabs. One is the
current source document being explored, and another is the snow-
ball where the working historian writes down annotations about his
findings.

Figure 6. Clicking on the button labelled with a plus sign “+” adds an entry
to the snowball for the current appearance of the selected entity, and advances
to the next one.

Each entry contains some document metadata, some indications of
the current location in the document (search query and result index,
character position, percentage of total characters and page), a quota-
tion around the current position for context, and an empty field for
additional annotations.

Figure 7. The snowball document with the last entry automatically added.

The amount of context copied in the quotation is all text in a
100-character radius from the entity rounded up to the next com-
plete word. We tried first ending the quotation when reaching a new
paragraph but we found that sometimes we were left with too little
context for no practical advantage.

The snowball is an HTML document that can be edited directly in
HistoRadar, modified by external tools, and loaded again to continue
working on it.

More details about the user interface are available in the report [6].

6 EVALUATION AND CONCLUSION
Readily available Named-Entity Recognition libraries seem oriented
towards great precision at the expense of recall. That is adequate for
many tasks, but in this application, recall is more important than pre-
cision because the historian does not want to miss any potentially
interesting event. Having some false positives is tolerable as long as
they are few relative to the number of true negatives so using our
program still saves a considerable amount of effort.

As we mention is Section 4 most of the errors in identifying named
entities come from OCR errors. Those errors affect not only our ap-
plication but others like keyword search too, so it is important to find
ways to solve that problem in general. This is where a rich user in-
terface can be of help: it could for instance compute some similarity
metric among the entities (such as Levenshtein distance) and display
them clustered according to it. This would allow the user to find them
even in the presence of OCR errors. Search engines such as Google
already suggest lexically similar keywords when they find a close al-
ternative with high ranking. We could make use of extra information
like semantic distance (used in query expansion) to position them in
the radar screen plane.

The information we extract so far is just a count of mentions of
each found Named Entity in the collection, for each document. We
had planned to implement more refined information extraction and
display the points where that information changed: for instance, if
we had X-supports-Y with X being a member of the cabinet it would
be interesting to look at places where it changes to, say, X-rejects-Y
or X-supports-Z where Z was an alternative to Y.

This turned out to be too ambitious for now, but we keep our in-
tention to explore what is possible in that direction.

The best results of this application are in the user interface area,
where we successfully automated some of the historian’s workflow.
The automatic citation into the snowball document seems like a su-
perior alternative to manual copy and paste, and the radar screen pro-
vides a quick way to start exploring historical document collections
without any previous knowledge about their content.

REFERENCES
[1] Jason Baldridge, Gann Bierner, and Thomas Morton. The opennlp tools

api. http://opennlp.sourceforge.net/, 2008.
[2] Uwe Boltz. Historadar seminar report: Named-entity recogni-

tion. https://code.google.com/p/historadar/wiki/
ReportNER, 2010.

[3] Johannes Braunias. Historadar seminar report: Metadata extrac-
tion. https://code.google.com/p/historadar/wiki/
ReportMetadata, 2010.

[4] Jenny Rose Finkel, Trond Grenager, and Christopher Manning, ‘Incor-
porating non-local information into information extraction systems by
gibbs sampling’, in 43nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2005), pp. 363–370, (2005).

[5] Free Software Foundation FSF. Gnu general public license. Soft-
ware License available at http://www.gnu.org/copyleft/
gpl.html, 1991.

[6] Alberto González Palomo. Historadar seminar report: Graphical user in-
terface. https://code.google.com/p/historadar/wiki/
ReportUserInterface, 2010.

[7] Alberto González Palomo, Johannes Braunias, and Uwe Boltz.
Historadar seminar report. https://code.google.com/p/
historadar/wiki/Report, 2010.

http://opennlp.sourceforge.net/
https://code.google.com/p/historadar/wiki/ReportNER
https://code.google.com/p/historadar/wiki/ReportNER
https://code.google.com/p/historadar/wiki/ReportMetadata
https://code.google.com/p/historadar/wiki/ReportMetadata
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
https://code.google.com/p/historadar/wiki/ReportUserInterface
https://code.google.com/p/historadar/wiki/ReportUserInterface
https://code.google.com/p/historadar/wiki/Report
https://code.google.com/p/historadar/wiki/Report

	INTRODUCTION
	SOURCE TEXT ACQUISITION
	METADATA EXTRACTION
	EVALUATION OF NER ENGINES
	WORKFLOW AND USER INTERFACE
	EVALUATION AND CONCLUSION

