Interactivity of Exercises in
ACTIVEMATH

Giorgi Goguadze ®, Alberto Gonzélez PalomoP?, Erica Melis ©,

& University of Saarland, Saarbricken, Germany
b German Research Institute for Artificial Intelligence
(DFKI) Saarbriicken, Germany
¢ German Research Institute for Artificial Intelligence
(DFKI) Saarbriicken, Germany
george@activemath.org

Abstract. Interactive exercising is one of the major ingredients of
technology-enhanced learning. It reaches its full potential only, when
appropriate feedback is given to the learner. This paper describes a prin-
cipled approach for representing and processing interactive exercises in
AcTIVEMATH. This approach relies (1) on a modular architecture of the
exercise player, (2) on a separation of different types of knowledge that
have to be handled to generate feedback, and (3) on a generic represen-
tation of interactive exercises.

Keywords. architecture, intelligent scaffolding, exercise representation,
web-based mathematics application

1. Introduction

Interactivity is one of the major advantages of technology-enhanced learning over
traditional learning material. For an effective and interesting learning experience,
a variety of types of interactive exercises is needed rather than multiple choice
questions (MCQs) only. Moreover, it has been shown, that feedback is mandatory
for fully exploiting the benefits of interactivity for learning [10].

Many e-learning systems do not provide feedback that goes beyond a cor-
rect/incorrect response referring to pre-defined results. Even in intelligent tutor-
ing systems (ITS), this diagnosis is done for small domains only or feedback is
authored.

Such a program is more powerful, if it uses reasoners such as a computer
algebra system (CAS) to evaluate the input of the learner. An author can encode
the exercise using the language of a CAS and connect to the CAS to "play” the
exercise. This was our first approach in ActiveMath [1]. Previously, exercises in
ACTIVEMATH were programmed individually or as classes of exercises. Our ex-
perience is that such an approach is limited. On the one hand, it binds authors to
the syntax of the computer algebra system. Moreover, CASs are not designed for
representing human-like problem solving steps. Such exercises are not reusable

with other CASs, and therefore, the learning environment is bound to the particu-
lar CAS. On the other hand, it is not possible to apply different tutorial strategies
to the same exercise and to adapt to the particular learner or learning situation.

In order to extend the types of range of interactive exercises to respond to
author’s wishes, to keep exercises modifiable and extensible, and to provide more
elaborate feedback in ACTIVEMATH, our goal was to allow for both, authored
and generated feedback, for a variety of exercise types, and for a clear separation
of functionalities necessary for interactive exercise. We report some main results
on that way here.

This paper is organized as follows. After short preliminaries about the Ac-
TIVEMATH system and the OMDOC knowledge representation we introduce the
extensions to the knowledge representation of exercises and show how this knowl-
edge representation works in the ACTIVEMATH exercise subsystem.

2. Preliminaries

ACTIVEMATH is a web-based user-adaptive learning environment for mathemat-
ics [7]. It dynamically assembles courses of learning material for the individual
learner according to her learning goals, preferences, and mastery of concepts. It
makes suggestions on how to proceed with learning and navigation.

The information about the learner and his learning context is represented in a
Learner Model. The dynamic assembling of courses is performed by the Tutorial
Component which selects elements to be presented to the learner, according to
the information from the Learner Model.

OPENMATH and OMDoOC Representations for Mathematics The content is an-
notated with metadata and stored in a knowledge base. The knowledge representa-
tion language in ACTIVEMATH is OMDoc, a semantic markup language for math-
ematical documents [6]. OMDOC has evolved as an extension of OPENMATH!
which is an XML-representation standard for mathematical formulas. The main
difference between OPENMATH and other representation formats for mathemat-
ical formulas, such as Presentation MATHML and LATEX, is that OPENMATH
deals with the semantics of mathematical expressions rather than with their pre-
sentation only. OPENMATH defines so-called Content Dictionaries in which math-
ematical symbols are declared and their semantics is defined. OPENMATH for-
mulas are tree like XML-structures of OPENMATH symbols. The semantic repre-
sentation of formulas allows for automatic translation of these formulas to (and
from) the languages of different mathematical systems This provides the basis for
interoperability of different computer algebra and other reasoning systems.

OMDoc defines learning objects (LOs), such as exercises, definitions, and
some relations between them. Such LOs can consist of text mixed with formulas
in OPENMATH format.

We extended the OMDOC representation of the exercises to meet frequent
usage requirements for interactive exercises. The new format is briefly described
in the following section. A full account can be found in [4].

Isee http://www.openmath.org for the standard specification

3. Knowledge Representation of Interactive Exercises

An exercise can be seen as a finite state machine of interactions, either prede-
fined or generated. An interaction is a state of an exercise in which an interac-
tion of the learner with the system takes place.

The interaction contains feedback for the event that triggered it, an
interactivity assignment that describes how to substitute certain parts of the
feedback by interactive elements (e.g. replace a term by a blank), and one or more
transition maps describing which interaction comes next depending on the
learner’s input.

We extended the knowledge representation of interactive exercises in [3] by
introducing three layers of markup for each interaction of the exercise. The first
layer consists of the content, i.e. text possibly mixed with formulas (feedback).
The second layer attaches interactive elements of different types to the places
in the content marked for interactivity (interactivity assignment). The third
layer defines conditions to be satisfied in order to proceed to further interactions
(transition map).

The element feedback contains textual content presented to the learner in
the step. 2

The optional attribute from allows to import the feedback elements from
another interaction, and the attribute keep specifies whether the previous input
plus feedback is shown after the step is performed or whether it is not.

The interactivity assignment attaches interaction types to the content of
the feedback element. It defines which parts of the content become interactive
and what types of interactivity is to be used, e.g. selection (presented as choice
questions or drop-down menus), fill-in-blank, mapping, or marking.

The transition map the condition elements and a default for a default
condition. Default condition is used if none of the other conditions are satisfied.
Each condition has a pointer to an interaction to be executed, if this condition is
satisfied.

Currently, the condition element is a statement that may contain predicates
syn_eq, num_eq and sem_eq. syn_eq means 'syntactic equality’ and calls a proce-
dure that checks whether the input of the learner is syntactically equal to a given
expression. num_eq means numeric equality’ and calls a procedure that checks
whether the input of the learner is a number and is numerically equal to a given
number. If the user input differs from prescribed result less then a given epsilon,
then the input is considered numerically equal. sem_eq means ’semantic equality’
and calls a procedure that checks whether the input of the learner is the same
mathematical object. For this evaluation a computer algebra system is used.

Each interaction can be annotated with metadata describing competencies,
relations to concepts trained in the step, as well as difficulty, mastery assessment
to be sent to the Learner Model.

Figure 1 shows a representation of an exercise step the rendering of which is
shown in the Figure 2 (OPENMATH formulas are abbreviated to linear notation
for the lack of space).

2This is analogous to QTT’s material element

<interaction id="int_1_hint">

<feedback from="int_1" keep="yes"/>

<feedback><CMP xml:lang="en">Try again:

diff ((x*sin(x+1))+2,x)=diff ("blankl"),x)+diff ("blank2",x)</feedback>
<interactivity_assignment>

<blank for="blankl"/><blank for="blank2"/>
</interactivity_assignment>

<transistion_map>

<condition xref="intl_correct">
<composite><sem_eqg>x*sin(x+1)</sem_eq><sem_eq>x</sem_eq></composite>
</condition>

<default xref="intl_wrong"/>

</transition_map>

</interaction>

Figure 1. Exercise step representation

In the Figure 1 interaction consists of two feedbacks, the first of which is
imported from the previous interaction and kept in the next step. The second feed-
back is a hint statement and will dissappear in the next step. The interactivity
assignment defines 2 blanks for those two parts of the formula marked with
IDs. In the transition map one condition is defined, containing the semantic
comparisons with the correct results and one default condition.

For all possible steps an exercise can contain fully authored interaction
elements as well as an interaction_generator element that is used to generate
interactions automatically.

4. Authored vs Generated Answers

The architecture of the exercise system has the potential to process fully authored
as well as (partially) generated exercise representations. Whether the interactions
are generated depends on the availability of intelligent components that can help
to diagnose errors of the learner in a particular learning domain and a component
for generating feedback from the diagnosis.

Part of the feedback generation is the application of tutorial strategies. In
order to allow for different tutorial strategies for the same exercise, these strategies
have to be represented separately and applied to the exercise representation.

The exercise subsystem renders interactive steps, evaluates the learner’s input,
diagnoses and generates feedback, automatically generates interactions applies
tutorial strategies for adapting to the learner and his learning situation, reports
the achievements of the learner to the rest of the ACTIVEMATH system.

Consider the two versions of an exercise in Figure 2 and 3, whose interactions
were completely generated by a reasoning component and whose feedback was
inserted automatically by two different tutorial strategies. Figure 2 shows the
result of the application of the first strategy. In this strategy, when the learner
asks for a hint, the system provides him with a simpler task by inserting the
structure of the derivation rule to be applied here. In the second strategy, shown
in the Figure 3, the needed derivation rule is formulated, and the learner is invited
to try the same task again.

diff((% - sin{ & + 1) + 2), %) = hint

Try again:

(& - sin(t o+ 13 + 2,) = difi | syt [

Evaluate' Hint| Inputsyntax:IMa\pIe'M = Inputsyntaxhelpl Displayformat:lHTML =

Figure 2. Partial insert - hint strategy

diffif % - sin({ 5+ 1) + 2), 5)

Incorrect! Try again:

Conceptual Hint:

According to the sum rule

diffi A @), x) = oifff £, &) + difff g6, &)

Try again!

—

Evaluate' Hint| Inputsyntax:IMa\pIe'M = Inputsyntaxhelp| Displayformat:'HTML i |

Figure 3. Conceptual hint strategy inserting the rule statement

The hint in the first strategy is generated via the reasoner that computes
concrete functions which are inserted into the rule application. The hint in the
second strategy does not depend on the concrete function and does not have to
be generated by the reasoner each time. The reasoner determines the appropriate
rule and provides its link to the tutorial strategy.

5. Separation of Functionalities for Scaffolded Exercising

It is a well-known fact that modifications and extensions are much easier to re-
alize, if different types of functionalities and knowledge are separated by design
and implementation. Therefore, the ACTIVEMATH exercise player has a modular
architecture.

The diagram in Figure 5 displays a simplified architecture and information
flow. The Exercise Manager is the main component of the exercise subsystem
responsible for managing the collection of the exercise steps and for executing
the exercise steps. In the initialization process, the Exercise Manager receives

User
Interface

Mediator

|
|
e | C3
Model]

user input
user data Exercise query
Manager

Evaluator/ OpenMath

biagrosr overva ||
- - - | Domain
P result Reasoner
- |
|
|
|
|
|
|
|

getinteragfion 4 diagnosis

1
interpction query

1 interaction

Generator -

strategy

Tutorial
Strategies

~ diagnosis

feedback ~ ~
Feedback
Generator

Figure 4. Exercise Subsystem architecture

an exercise from the database and the learner data from the Learner Model. In
each step it connects to an Interaction Manager in order to receive the next
interaction to be played.

In case of a fully authored interaction, the Interaction Manager is substi-
tuted by the default static Interaction Manager that is delivering the existing
manually authored interaction from the exercise. After receiving a fully au-
thored interaction, Exercise Manager sends it to User Interface Mediator
which presents it to the learner.

In case of a (partially) generated interaction, another generator is employed.
This generator might need to connect to the Evaluator/Diagnoser which can
use Domain Reasoner or CAS components to provide the diagnosis on the action
of the learner. The Evaluator/Diagnoser can query external services such as
Domain Reasoner or CAS for diagnosis on the input. Using this diagnosis the
feedback and the next interaction are generated.

After the learner has submitted his answers or requests 3, the User
Interface Mediator is translating this answer/requests into OPENMATH and
passes it to the Exercise Manager. The Exercise Manager connects to the
Evaluator/Diagnoser component which evaluates the learner’s input by com-
paring it to each of the conditions in the transition map of the current
interaction.

The generator also applies a tutorial strategy from the Tutorial Strategy
module to the step.

As soon as an interaction has been assembled, it is returned to the Exercise
Manager which is passing it to the User Interface Mediator. In each step, the
Exercise Manager is also sending an event containing the learner’s input and
information characterizing the step such as the competencies trained in the step,

3Requests allow asking for hints or other forms of help

achievement of the learner w.r.t. the task, identifiers of concepts and miscon-
ceptions in erroneous steps. This event can be used for updating the Learner
Model.

The current implementation of the exercise subsystem is server-based and
works with a tight integration of the components by means of procedure calls. The
components of the exercise subsystem exchange fragments of XML documents
(interactions or their parts) or only OPENMATH formulas (e.g. for learner input).

6. Conclusion

ACTIVEMATH offers a general system-independent semantic markup language for
representing interactive exercises of different kinds. The exercise subsystem of
ACTIVEMATH is playing such exercises in a browser. The exercise subsystem can
connect to CASs and to other external programs in order to diagnose the learner
input and to generate feedback. There are no explicit calls to a particular external
program in the exercise content.

An exercise can be manually authored, generated completely, or partially
generated /authored.

In order to generate feedback and next interactions, the diagnosis of the
learner’s input has to be made. For this, the connection to a reasoning component
is established.

Obviously, a bottleneck is to find and encode all relevant potential erroneous
actions of the learner. For instance, in [5] 1000 buggy rules for the fractions domain
were empirically found and narrowed down statistically to 300.

User-adaptive presentation can be achieved via automatic enrichment of the
manually authored exercise by the tutorial strategies which are called and applied
to the exercise representation. Therefore, it is possible to reuse the same tutorial
strategies for different exercises.

The graphical user interface for presenting such an exercise to the learner is
also interchangeable since the exercise representation does not determine the pre-
sentation/rendering. The presentation is handled separately by the ACTIVEMATH
presentation system [9].

Acknowledgment

We are indebted to Claus Zinn for his clarifying interventions and help.

This publication is partly a result of work in the context of the LEACTIVE-
MATH project, funded under the 6th Framework Program of the European Com-
munity — (Contract IST-2003-507826) and RTD project iClass, funded under the
6th Framework Program of the European Community — (Contract IST-507922).
The authors are solely responsible for the content.

References

[1] J. Biidenbender, E. Andres, A. Frischauf, G. Goguadze, P. Libbrecht, E. Melis,
and C. Ullrich, Using Computer Algebra Systems as Cognitive Tools. 6th Inter-

national Conference on Intelligent Tutor Systems (ITS-2002), Springer-Verlag, Se-
ries “Lecture Notes in Computer Science”, editors S.A. Cerri, G. Gouarderes, and
F. Paraguacu, number 2363, pages 802-810, 2002.

[2] Global Learning Consortium. IMS Question & Test Interoperability Specification: A
Review <http://www.imsglobal.org/question/whitepaper.pdf>

[3] G. Goguadze, E. Melis, C. Ullrich and P. Cairns, Problems and Solutions for Markup
for Mathematical Examples and Exercises. In Proceedings of the Second Interna-
tional Conference on Mathematical Knowledge Management, MKMO03, Andrea As-
perti (ed.). <http://www.ags.uni-sb.de/~ilo/articles/EncodingExoExa.pdf>

[4] Goguadze, G., Gonzdlez Palomo, A., “Knowledge Representation of Interactive Ex-
ercises in ActiveMath”, SEKI-Report, Nr. SR-04-10, University of Saarland, 2004.

[5] M. Hennecke. Online Diagnose in intelligenten mathematischen Lehr-Lern-Systemen.
PhD thesis, Fortschritt-Berichte VDI, Hildesheim, 1999.

[6] M. Kohlhase. OMDoc: Towards an OPENMATH representation of mathematical doc-
uments. Seki Report SR-00-02, Fachbereich Informatik, Universitdt des Saarlandes,
2000.

[7] E. Melis, E. Andres, J. Biidenbender, A. Frischauf, G. Goguadze, P. Libbrecht,
M. Pollet, and C. Ullrich. ACTIVEMATH: A generic and adaptive web-based learning
environment. International Journal of Artificial Intelligence in Education, 12(4):385—
407, 2001.

[8] M. Mavrikis, A.G. Palomo, Mathematical, Interactive Exercise Generation from
Static Documents. <http://www.maths.ed.ac.uk/wallis/format/papers/mm_agp_
mkm.ps>

[9] P. Libbrecht, C. Ullrich, and S. Winterstein, An Efficient Presentation-Architecture
for Personalized Content, in Proceedings of Berliner XML Tage 2003, editors
R. Tolksdorf and R. Eckstein, Pages 379-388, 2003, ISBN 3885791161

[10] R. Schulmeister. —Didaktisches Design aus hochschuldidaktischer Sicht - Ein
Pladoyer fiir offene Lernsituationen. In U. Rinn and D.M Meister, editors, Didaktik
und Neue Medien. Konzepte und Anwendungen in der Hochschule, number 21, pages
19-49. ., 2004.

