
Easily Editing and Browsing Complex
OpenMath Markup with SWiM

Christoph Lange∗ Alberto González Palomo†

June 10, 2008

We present how the mathematical semantic wiki SWiM has been enhanced
towards support for editing content dictionaries (CDs) in the semantic markup
language OpenMath. The ongoing revision of the OpenMath CDs for the
3rd version of the standard has motivated several enhancements to the SWiM
user interface: a structural editor for CDs and their most common elements,
particularly addressing notation definitions for symbols, the integration of
a visual OpenMath formula editor, and a form-based editor for metadata.
We show how OpenMath CDs imported from the filesystem or a Subversion
repository are split into handy fragments that are convenient to edit and
navigate, and reassembled on export.

1 Introduction and Motivation

OpenMath [2] is a widely used semantic markup language for mathematical formulæ and
for content dictionaries (CD) that semi-formally define new mathematical symbols – their
informal description, their formal description in terms of other symbols, and optionally
a declaration of their type and their human-readable notation. Editors for OpenMath
formulæ exist, and the CDs approved by the OpenMath Society are presented for convenient
reading and browsing on the web [19], but to date there has not been an editor for CDs.

Editing support for CDs does not only require assistance with writing and structuring,
but also with browsing and collaborating. For example, CDs frequently reuse symbols
from other CDs, which makes an easy navigation from the occurrence of a symbol in a
formula to the place of its definition desirable. For collaborating on CDs there is currently
no other support than keeping them as files in a shared repository. This particularly
makes it hard to manage notational changes. For one mathematical symbol, there can be
multiple notations, and they can change1. Here, we mainly consider the case of having
one “standard” notation per symbol, which is subject to fine-tuning; assume e. g. that the
OpenMath Society decide that the default rendering of the multiplication operator should
no longer be the “invisible times” symbol, but ×. Verifying such a change is easiest by
looking at occurrences of that symbol in realistic formulæ. In the traditional workflow,
this requires finding all CD files and other documents that use the symbol whose notation
has been changed using text or XML search, regenerating the XHTML+MathML versions
∗Computer Science, Jacobs University Bremen, ch.lange@jacobs-university.de
†Computer Science, Saarland University, alberto.gonzalez@matracas.org
1For general background, we refer to [16] and [12].

1



of these documents with an XSLT processor [16] – possibly automated by a makefile –,
and then opening them in a browser, scrolling to the sections containing formulæ.

Below we present how the semantic wiki SWiM facilitates this workflow: how the
knowledge obtained from OpenMath CDs is represented and used to support navigation,
how CDs and formulæ are edited, and how the system reflects changes to notation
definitions.

2 SWiM, a Semantic Wiki for Mathematics

Wikis are well-established for web collaboration, so we aim at supporting collaboration
on OpenMath CDs by adapting SWiM [13] accordingly. SWiM already supported the
OMDoc semantic markup language [10] with OpenMath formulæ; now we have added
support for CDs and for notation definitions in the pattern-based language proposed for
MathML 3 [12], which is likely to be adopted for OpenMath 3. The mmlproc renderer [12]
renders formulæ according to the notations defined for the symbols they use. Mathematical
documents can be edited in SWiM, but also imported and exported and thus exchanged
with external repositories and edited with legacy editors.

3 Knowledge Representation and Navigation

SWiM exploits the structural semantics of CDs to support editing and browsing. An
OpenMath 2 CD consists of metadata (e. g. the review date) and symbol definitions (at
least of a symbol name and a mandatory and authoritative informal, natural-language
description). Optionally a symbol definition can have metadata, specifications of mathe-
matical properties – informal (so-called “commented mathematical properties”, CMPs) or
formal ones (FMPs) –, and examples. FMPs and examples contain formulæ, which in turn
use symbols, possibly from other CDs [2]. Type signatures and notation definitions for
symbols can be given in separate dictionary files.

Being a semantic wiki2, SWiM represents knowledge in the graph-like RDF data model
that is common on the semantic web. To get most out of the previously listed structural
properties of CDs, SWiM extracts them from the OpenMath XML documents to an RDF
representation [14]. Nodes and edges in an RDF graph (= wiki pages and links) are labeled
with types from vocabularies also called ontologies. For the RDF extracted from OpenMath
we thus had to design an ontology that models the structural properties of CDs. This
ontology reflects the syntactical structures of CDs, as given by the XML schema of the CD
language3, and additionally it models their semantics [14]. This semantics is given in the
OpenMath specification [2], which is not machine-comprehensible. Consider for example
the CDUses element that refers to a list of CDs whose symbols are used by the current one.
The XML schema can only restrict it to a list of strings that would be allowed for naming
CDs, but it does not convey the semantics that any such string is a by-name pointer to
an actual CD4. The OpenMath ontology models classes and properties for all structural
entities found in OpenMath’s CD groups, CDs, type signatures, and notation definitions.

2For more background on this, we refer the reader to a previous MathUI publication about SWiM [13]
and to the proceedings of the 3rd Semantic Wiki Workshop [15].

3We use “XML schema” as the generic term for an XML grammar language. Actually this is RELAX NG
in the case of OpenMath.

4Note that by adding a rule to the ontology it is also possible to compute the CDs used by some CD by
looking up the CDs of the symbols occurring in its FMPs and examples.

2



Properties from common ontologies like Dublin Core were reused where appropriate5.
Wikis facilitate browsing and collaboration on knowledge by encour-

aging a densely linked network of small knowledge items. Small wiki
pages reduce the potential of editing conflicts and allow for giving
more focused search results. SWiM exploits typed links on the level
of whole pages, displaying them in a navigation box, grouped by type –
as shown on the right for a symbol definition. One page can contain a
CD, or a subsection of a CD: As subsections of CDs also carry relevant
links and annotations and are frequently edited independently from
other such units – e. g. when an example for a symbol is edited while
leaving an FMP sibling untouched –, we decided to allow wiki pages to
represent knowledge on CD level, on symbol level (symbol definitions,
type signatures, or notation definitions), and even below symbol level
(CMPs, FMPs, examples). When an external CD is imported into
SWiM, e. g. from the filesystem or the OpenMath Subversion repository,
it is split into these units. The logical containment relationships before
splitting are preserved as XInclude [18] links and extracted to RDF,
using link types such as SymbolDefinition–containsExample–Example.
Note, however, that the OpenMath standard considers whole CDs as units that are subject
to review or change [2, sect. 4.5], and that for reading a CD or a symbol definition it would
be inconvenient to manually traverse all links to subsections of interest. Therefore, the
XInclude links are resolved automatically when a CD is exported from SWiM or when a
CD or a symbol definition is opened for reading, yielding a whole, self-contained CD.

The occurrence of symbols in formulæ is only shallowly represented in the RDF graph,
by direct links from FMPs or examples to the symbols they use. Representing the full
tree-like functional structure of a formula in RDF would add much overhead and hardly
yield additional benefit. If we had a vocabulary for expressing the whole syntactic structure
of a formula like ∀x.x ∈ R ⇒ ex > 0 in RDF, as discussed in [17], we would be able to
make the reference from the term ex to the bound variable x explicit (they would point to
the same URI), but still we would not be able to express the notion of α-equivalence in
the first order logic subsets commonly used for semantic web reasoning (e. g. description
logics). Exploiting the full semantics of formulæ should instead be left to a theorem prover,
a CAS, or a formula search engine. For supporting editing and navigation, shallow links to
symbols already prove useful: for computing dependent CDs (CDUses; see above), and for
reflecting changes to notation definitions, as we will show in section 4.2. However, the links
from individual symbols in rendered formulæ to their definitions can be traversed with
the mouse. This linking is achieved by post-processing the parallel markup that mmlproc
outputs and translating the (cdbase,cd,name) triples to SWiM-internal page URLs.

4 Editing

The SWiM editor is an extension of the visual HTML editor TinyMCE [20]. The structures
of the semantic markup are made accessible as special nested HTML tables, which can easily
be inserted via tool buttons. Both directions of this conversion are implemented in XSLT.
The head line of one such table includes the name of the XML element, e. g. CDDefinition,
and optionally the list of attributes as “key=value” lines, e. g. the type attribute of a

5The idiosyncratic metadata vocabulary of OpenMath 2 is likely to be replaced by Dublin Core (DC) in
OpenMath 3. Anticipating this change, we map e. g. the Name of a symbol definition to the dc:identifier
property, and Description to dc:description.

3



signature dictionary, which points to a CD defining the type system used for the signatures.
While any desirable markup can be represented like this, it is not user-friendly for deeply
nested structures. Therefore, SWiM gives dedicated editing support for certain aspects
of the markup: First, metadata of CDs or symbol definitions are editable via a dedicated
form-based metadata editor. Secondly, for some XML elements the tables are arranged
more intuitively. For example, notation definitions map a prototype to a rendering (cf.
sect. 4.2), which is reflected by the side-by-side arrangement notation

prototype rendering instead of
notation

prototype
rendering

. Finally, there is a visual formula editor, which we will explain in detail in the

following section.

4.1 The Formula Editor

We reuse the visual OpenMath formula editor that originated in the Sentido Mathematical
Environment [7] and integrate it as a plugin into TinyMCE in a similar way as done
previously into the MathWebSearch formula search engine [11].

Inside TinyMCE, the formulæ are encoded as span elements, decorated using CSS.
When the cursor is inside one of them, the Sentido toolbar button is highlighted, and the
document path displayed below shows the location as “formula”, instead of “span”.

Figure 1: Editing a document in the extended TinyMCE, formulæ marked yellow.

The editor comes as a pop-up window, consisting of an input field for the linear formula,
a drop-down menu for selecting the input syntax, a preview area where the 2D formula is
shown in Presentation MathML updated in real time as we type in the input field, and a set

4



of collapsible palettes for inserting formula templates. These palettes are XHTML made
by hand to include all the symbols from the MathML group of the standard OpenMath
CDs, but we plan to make SWiM automatically generate additional ones for other symbols
defined in the wiki.

Figure 2: The formula editor window, when editing three different formulæ. The Variables
palette allows to declare variables as functions. All symbols have Unicode and
ASCII variants (inf/∞), and outermost parentheses do not need to be complete
as seen in the bottom example.

Currently we provide four different syntaxes, but more can be defined via XML “context”
files [6]. What those CAS syntaxes have in common, in contrast with LaTeX, is that they
describe the content of mathematical expressions. Note that it is not possible to automate
the translation from LATEX syntax to content formulæ, as LATEX is rather presentation-
oriented, but an approximation would be possible.

It is not necessary to open the formula editor to do minor edits to the formulæ: any
changes to the linear formula text are reflected in both the content of the formula editor if
called later, and in the submitted OpenMath XML content.

Since the editor keeps track of the syntax used for each formula (displayed as tooltips),
it is possible to have formulæ temporarily in different syntaxes while editing. However, the
next time this page is opened for editing in SWiM, all formulæ will be translated from
OpenMath to the same syntax as specified by the server. This way it is possible to quickly
paste a formula in any of the supported syntaxes without having to convert the rest.

The formulæ are submitted as a string serialization of OpenMath XML, so that they
do not interfere with TinyMCE or the browser. Using XML directly would corrupt the
content because the editor works in HTML mode. On the server, this string is parsed
back into XML. When a page is opened for editing next, the server again has to provide
any contained OpenMath formulæ in their string serialization. Both is done in the same
processing step as the conversion of the other CD markup to HTML tables.

In this application of the formula editor, we can not display the MathML formulæ as
is done in Sentido and other formula editors like ASciencePad [8] because of interference
from other components.

Undo/redo inside the linear input field in the formula editor is provided by the browser,
which is enough as changes in the text field are parsed back immediately, while outside it

5



notDef sym

fmpfmpfmp

exexex

symDefsymDefsymDef cdcdcd

renders-
Symbol

usesSymbol

usesSymbol

contains

contains

contains

Figure 3: Finding pages (depicted as stacks of nodes) affected by changes to a notation
definition. Note that both sym and the symDef s are instances of the class
SymbolDefinition.

is handled by TinyMCE. Inside the formula editor each change can be undone/redone, but
once we leave it the whole formula becomes an undo step.

4.2 Reacting to Changed Notation Definitions

Whenever the notation of a symbol σ has changed, all the presentation markup gener-
ated from formulæ containing σ has to be invalidated and re-rendered upon the next
request. This addresses the use case outlined initially. A notation definition for a
symbol maps a pattern of content markup (a prototype) to a fragment of presentation
markup (a rendering). For example, a notation definition for the root operator could look
like @(arith1#root, arg, n) ` n

√arg6. From this, the RDF triple <url/of/NotDef> omo:
rendersSymbol <url/of/arith1/root> would be extracted. Whenever a wiki page con-
taining notation definitions is saved or imported, the notation definitions are put into a
cache read by the mmlproc renderer.

If a notation definition has been added, deleted, or changed, the affected documents
have to be re-rendered. In order to do this properly, SWiM has to (1) identify changes
to notation definitions, and (2) identify documents affected by a change. (1) is done by
computing an XML diff between the cached and the newly inserted version of a notation
definition. (2) is done by querying the RDF graph for all FMPs and examples using the
symbol rendered by the respective notation definition, as shown in fig. 3 and technically
explained in [14]. Not only the wiki pages holding these FMPs and examples have to be
re-rendered, but also those pages (symbol definitions and CDs) that directly or indirectly
include these fragments.

5 Related work

The OpenMath edition of SWiM deals with semi-formal mathematical content. ProofWiki
is a prototype of a wiki that contains fully formalized mathematical content [3]. The
semantic structures of the content are, however, only used by the integrated Coq proof
assistant, not to facilitate browsing or editing. Human-readable descriptive texts are written
in non-semantic LATEX. We are instead planning to build more support for the OMDoc
language into SWiM, in order to support the full range between completely informal and
completely formal mathematical knowledge.

6In this abstract syntax, @ means an application of a symbol to arguments, and underlined variables are
placeholders for subtrees that are rendered recursively [12]. Actually, all this is encoded in XML.

6



OMPE (OpenMath Presentation Editor [16]) is an editor for notation definitions
for OpenMath symbols. The content pattern to be matched is entered in OQMath, a
variant of our linear QMath syntax. The resulting presentational pattern can be edited
in a LATEX-like syntax; common presentation symbols can be inserted via a toolbar. This
makes it much more usable than SWiM in its current state. We are planning to address
this by reusing parts of our formula editor, such as the parser for the linear input syntaxes,
for editing notation definitions, too. On the other hand, debugging notation definitions by
previewing their effect to rendered formulæ is only possible by afterwards feeding them to a
presentation pipeline and viewing the rendered documents in the ActiveMath environment,
whereas SWiM offers both in an integrated environment.

Managing changes to notation definitions has been investigated for the TEXmacs
editor before, which has been extended towards semantic markup in the PlatΩ project [1].
The developers focus on notations that use natural language and on parsing text and
formulæ the user writes in a presentational style back to a semantic representation. Both
features have not yet been investigated in SWiM; here the focus is rather on making the
semantic markup editable in a convenient way. As a change to a notation definition in
PlatΩ/TEXmacs involves regenerating parser rules, special attention is paid to making
this efficient by only regenerating those rules that are affected by a change.

Both WIRIS [5] and ASciencePad [8] feature a visual formula editor integrated into
HTMLArea, an editing widget similar to TinyMCE. ASciencePad is an extension of the
single-file and single-user “wiki” TiddlyWiki; its math editor translates a linear syntax to
Presentation MathML. WIRIS have instead integrated a Java applet for visually editing
Presentation MathML formulæ and offer this as a plugin for the Moodle e-learning platform.
No linear input syntax is used, but the formula is composed, not only previewed, two-
dimensionally, and inside HTMLArea the formulæ are previewed as images. However,
neither of the two editors edits content markup. WIRIS have developed an OpenMath
editor [4], but that one is not integrated into HTMLArea.

6 Conclusion and Outlook

We presented how SWiM facilitates the editing of OpenMath CDs, particularly by inte-
grating a visual formula editor, and by immediately re-rendering documents affected by
notational changes thanks to the underlying graph of semantic relationships between parts
of the CDs. Now that SWiM has a reasonable coverage of the OpenMath 2 standard, plus
the notation definition syntax upcoming with OpenMath 3, we hope to deploy it as a plat-
form for browsing and maintaining the OpenMath 2 CDs at http://www.openmath.org
soon. Once the details of the OpenMath 3 CD format are settled, we will adapt SWiM to
these, updating both the ontology and the user interface, and deploy SWiM as an editor
for the OpenMath 3 CDs.

So far, SWiM assumes one notation definition per symbol. mmlproc supports callbacks to
an algorithm that selects the most appropriate out of a set of multiple possible renderings
for a symbol [12]. In future, it is planned to provide a user interface inside SWiM that lets
the user select his preferred rendering for every symbol. While SWiM supports browsing
CDs well, with typed navigational links and symbols in formulæ linked to their definitions,
searching formulæ is not yet supported. Search could be provided by the MathWebSearch
engine [11], which would be instructed to crawl SWiM’s database of documents.

We are still keeping in mind that SWiM should not only be a collaborative editor for
OpenMath, but also for the more expressive but more complex OMDoc language [10]. The
achievements made for OpenMath support in SWiM in terms of knowledge representation,

7



browsing, editing, and import/export are currently being transferred to OMDoc in order
to improve the OMDoc support over the state presented earlier [13]. Thus, user feedback
obtained from deploying SWiM to the OpenMath community will also lead to improvements
for OMDoc users. Finally, with the Sentido Firefox plugin [7] we have developed an advanced
WYSIWYG editor for OMDoc. We are planning to integrate it more tightly with SWiM
and thus offer it as a powerful alternative editor to our extended TinyMCE.

References
[1] S. Autexier, A. Fiedler, T. Neumann, and M. Wagner. Supporting user-defined notations when

integrating scientific text-editors with proof assistance systems. In Kauers et al. [9].

[2] S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaetano, and M. Kohlhase. The
Open Math standard, version 2.0. Technical report, The Open Math Society, 2004. http:
//www.openmath.org/standard/om20.

[3] P. Corbineau and C. Kaliszyk. Cooperative repositories for formal proofs. In Kauers et al. [9].

[4] R. Eixarch. WIRIS editor. http://www.wiris.com/content/view/20/.

[5] R. Eixarch. WIRIS plugin for Moodle. http://www.wiris.com/content/view/96/.

[6] A. González Palomo. QMath: A human-oriented language and batch formatter for OMDoc.
In OMDoc – An open markup format for mathematical documents [Version 1.2] [10].

[7] A. González Palomo. Sentido: an authoring environment for OMDoc. In OMDoc – An open
markup format for mathematical documents [Version 1.2] [10].

[8] P. Jipsen. ASciencePad – a TiddlyWiki suitable for scientific notes. http://math.chapman.
edu/~jipsen/asciencepad/asciencepad.html.

[9] M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors. MKM/Calculemus 2007,
number 4573 in LNAI. Springer, 2007.

[10] M. Kohlhase. OMDoc – An open markup format for mathematical documents [Version 1.2].
Number 4180 in LNAI. Springer, 2006.

[11] M. Kohlhase, Ș. Anca, C. Jucovschi, A. González Palomo, and I. A. Șucan. MathWebSearch 0.4,
a semantic search engine for mathematics. Manuscript at http://mathweb.org/projects/
mws/pubs/mkm08.pdf, 2008.

[12] M. Kohlhase, C. Müller, and F. Rabe. Notations for living mathematical documents. In
Mathematical Knowledge Management, MKM’08, LNAI. Springer, 2008. in press.

[13] C. Lange. SWiM – a semantic wiki for mathematical knowledge management. In P. Libbrecht,
editor, Mathematical User Interfaces Workshop, 2007.

[14] C. Lange. Mathematical Semantic Markup in a Wiki: The Roles of Symbols and Notations.
In Lange et al. [15].

[15] C. Lange, S. Schaffert, H. Skaf-Molli, and M. Völkel, editors. 3rd Workshop on Semantic Wikis,
2008.

[16] S. Manzoor, P. Libbrecht, C. Ullrich, and E. Melis. Authoring Presentation for OpenMath. In
M. Kohlhase, editor, Mathematical Knowledge Management, MKM’05, number 3863 in LNAI.
Springer, 2005.

[17] M. Marchiori. The mathematical semantic web. In A. Asperti, B. Buchberger, and J. H.
Davenport, editors, Mathematical Knowledge Management, MKM’03, number 2594 in LNCS.
Springer Verlag, 2003.

[18] J. Marsh, D. Orchard, and D. Veillard. XML inclusions (XInclude) version 1.0
(second edition). Recommendation, W3C, Nov. 2006. http://www.w3.org/TR/2006/
REC-xinclude-20061115/.

8



[19] OpenMath content dictionaries. http://www.openmath.org/cd/.

[20] TinyMCE – a platform independent web based JavaScript HTML WYSIWYG editor. http:
//tinymce.moxiecode.com/.

9


