
Interoperability Issues between Markup formats
for Mathematical Exercises

Giorgi Goguadze1, Manolis Mavrikis2, Alberto González Palomo3

1 University Of Saarland,D-66123, Saarbrücken, Germany
george@activemath.org

2 School of Mathematics, The University of Edinburgh,
EH93JZ Edinburgh, UK
M.Mavrikis@ed.ac.uk

3 DFKI Saarbrücken, D-66123, Saarbrücken, Germany,
alberto@activemath.org

Abstract. In this paper we describe several existing knowledge repre-
sentation formats for interactive exercises and how these address the rep-
resentational needs of mathematical exercises. The paper also provides
an overview of existing tools that support these formats such as players,
rendering exercises and the role of mathematical services assisting these
players. Since most of the developers of this family of languages have the
same goal, it is now more possible than before, to reach a common rep-
resentation format. Having this in mind, we discuss features, limitations
and the interoperability between them.

1 intro

Introduction
Authoring exercises, and particularly interactive and intelligent ones for math-

ematics, is one of the most time consuming processes in the e-learning field. In
addition, as [10] describes, authoring is often conducted in a proprietary format
of particular systems that hinders reusability, sharing and exchange between in-
terested parties. Efforts are underway to establish standards and specifications
that would facilitate authoring, reusability, exchange between educators and in-
teroperability among systems. These efforts often have different perspectives but
at least share some common goals making the transformation between data for-
mats more possible than ever before. On the other hand there are still problems,
since some formats are not generic enough, the representation is often bound to
the underlying technology of the system, and the efforts of transforming such
representations fail at these system specific parts.

This paper reviews briefly these approaches and tools that support them, and
describes some important interoperability and transformation problems among
them in an attempt to reveal basic common subset of those formats.



2 Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

2 Data formats for interactive exercises

2.1 QTI and related formats

The IMS Question & Test Interoperability (QTI) specification provides a data
model for the representation of questions (and tests), the way to process the
user’s response and their corresponding results. It has been developed by the
non-profit organization IMS Global Learning Consortium, whose mission is to
promote the adoption of open technical specifications for interoperable learning
technologies worldwide.

QTI’s very first version appeared in early 2000. After a number of issues that
were raised by implementers and other interested parties the specification was
extended and updated a couple of times. Other issues uncovered more funda-
mental aspects of the specification that would require extensive clarification or
significant extension in order to be addressed. As the QTI overview describes,
“since the QTI specification was first conceived, the breadth of IMS specifica-
tions has grown and work on Content Packaging, Simple Sequencing and most
recently Learning Design created the need for a cross-specification review”.This
review process led to a release of the second version which focuses only on the
individual items and does not update those parts of the specification that dealt
with the aggregation of items into assessments.

In this second version several question types are supported. MCQs, fill-in-
blanks, even matching and other types of graphical interactions. A major change
was the introduction of the concept of cloning and question templates which al-
low the creation of a set of questions based on randomly selected values which
can be used in the text and response processing of the question. The new specifi-
cation supports templates that define common marking schemes that processing
engines can support in advance in a way that enables further interoperability.
Of course, other than the default response processing templates, authors can de-
clare their own processing instructions. The response processing model has been
changed from the quite declarative one of the first version to one that supports
more complicated response processing, that consists of a sequence of rules that
are carried in order by the response processing engine. Based on some flag-like
variables, which are set during the response processing, conditional feedback can
be presented to the learner. Although version 2 also allows multiple parts of a
question and adaptive items which change according to the response processing
of previous steps, these parts are not reusable but bound to the specific item
that includes them. In addition, authoring the several conditions and paths be-
comes very complicated due to the programming-like (yet XML-based) language
that the response processing is based on. On the other hand, one could argue
that this provides enough flexibility to encode complex and elaborate questions.
However, as [1] observes, this greater flexibility inevitably provides multiple ways
of implementing a response processing. This way one can use a more complex
coding than what is required. Such redundancy does not introduce ambiguity,
however, it can hurt interoperability as some engines will not be able to support
the more complicated questions.



Interoperability Issues between Markup formats for Mathematical Exercises 3

2.2 Mathematical exercises and QTI

It is worth noting here that QTI (especially its first version) was not explic-
itly developed with mathematics in mind (see discussions in [3,10,16]) and ig-
nores many significant problems that authors of mathematical activities face.
These have been discussed in several meetings and workshops of the community
[12,14,13] and mailing lists[5,6]. The main issues are summarized here:

– Answers to mathematical questions, more often than not, involve mathe-
matical entities which need to be understood by the system, processed and
evaluated appropriately.

– Mathematical questions especially for Science and Engineering often test
precision and accuracy of real values and therefore feedback and scoring
needs to be adapted to the students’ answers.

– It is not possible to have mathematics in all of the parts of the question (e.g
title, statement, feedback) in an interoperable, platform-independent and
system-understandable way.

– It is often necessary and faster to author mathematical questions, describe
their response processing and the feedback they provide, by using mathe-
matical constructs like variables that can also be randomized.

– QTI is weighted towards “teacher provided” response questions in which
a student is required to make a certain kind of selection from responses
provided by a teacher (for example MCQs). Actually, a teacher more usually
would prefer to establish that the student’s own answer satisfies certain
(mathematical) properties.

– Mathematical questions often require the learner to provide an answer for
which the form (e.g matrix, fraction, parts of a formula) is already provided
(in order, for example, to test specific aspects or even to make it easier for
the student to answer).

– There are many examples of question structures which research has shown
to be useful and effective. These include such things as conditional hints,
multiple parts and partial marking. Such features are now reasonably well
established in mathematical CAA and their absence provides less flexibility
during the question processing and leads to less effective feedback.

2.3 MathQTI as an extensions to QTI

The aforementioned limitations were some of the inspiration behind the JISC-
funded “Serving Mathematics in a distributed e-learning environment”4 project
which aimed to develop open-source software and tools to address the special
requirements of Mathematics in the context of e-learning and e-assessment. Part
of the project looked into extending the IMS Question & Test Interoperability
(QTI) specification in an way as compatible and convenient as possible, in an
attempt to enable the exchange of questions with mathematical content between
question engines and authoring tools.
4
http://maths.york.ac.uk/serving maths/

http://maths.york.ac.uk/serving_maths/


4 Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

A result of this process was a first draft of the MathQTI specification[9] and
the decisions to:

– use presentation MathML for questions statements and feedback.
– employ OpenMath[18] with a restricted content dictionary for the mathe-

matical expressions in the template and response processing. An attribute
determines how the OpenMath expression is dealt with (is it evaluated to a
number, to an expression, simplified, or left unevaluated).

– introduce a new tag to test for syntactical equivalence in response processing.
– allow an alternative way of including interaction elements in question state-

ments and feedback, which works via id’s and the “for” attribute, further
separating content from presentation and allowing mathematical expressions
to be substituted by interactive elements.

Most of these aspects were inspired from other formats (like the ones in
WaLLiS and ActiveMath, which are discussed in the following sections) in an
attempt to bring them close and enable interoperability. On the other hand, as
the format is based on QTI it benefits from its features but also suffers some of
its limitations in relation to multiple parts, help or hint requests and adaptive
response processing. Although it is appreciated that there will always be a ten-
sion between writing a specification which includes interesting “features” and the
complexity of writing platforms which comply with emerging standards, features
such as conditional hints, multiple parts and partial marking are now reasonably
well established in mathematical Computer-Assisted Asessment (CAA) and their
absence from a common specification would hinder its widespread approval.

2.4 ActiveMath Exercise Format

The interactive learning environment ActiveMath [15] possesses its own rep-
resentation format for interactive exercises, which extends the OMDoc [17]
knowledge representation. As in OMDoc, OpenMath standard [18] for repre-
sentation of mathematical formulas is used. This format was first defined in [5],
then some refactoring was made in cooperation with the WaLLiS project [10].

Some further changes were made over the last few years, based on experience
gained from testing the capabilities of such a representation with authors in
realistic conditions. The expressivity of the exercise language was improved based
on real demands from an extensive test and study at a school (70 6th grade
pupils) in Saarbrücken, a customisation as Matheführerschein5, and a large study
with 250 students at the Institute of Education of the University of London.
These changes were mainly fuelled by the goal to reuse exercise encodings for
several learning situations and different tutorial strategies.

The knowledge representation of ActiveMath, as described below, was the
basis for defining the less expressive knowledge representation for interactive ex-
ercises in the LeActiveMath project. The current version of the ActiveMath

5
http://mfonline.activemath.org:8080/MatheOnline

http://mfonline.activemath.org:8080/MatheOnline


Interoperability Issues between Markup formats for Mathematical Exercises 5

exercise knowledge representation is described in [6]. In this format, a fully au-
thored exercise is a finite-state machine consisting of a graph of interactions,
which represent the nodes of the exercise graph and transitions that connect
different nodes in this graph. The basic structure of an interaction element is
shown in Figure 1. An interaction contains one or more feedback elements
providing textual6 or graphical feedback to the learner. Each feedback is followed
by an interactivity assigment specifying which interactive elements should
be used in the interaction (e.g. fill-in-blanks, multiple-choice-questions). Each
interaction can have one or more interactive elements of different types.

Finally a transition map element follows, containing transitions. Each tran-
sition connects two interaction nodes of the exercise. It contains a condition
that has to be satisfied in order to jump from the current interaction to the
target of the transition. Conditions contain comparisons of different types, that
have to be applied to the user’s input. A comparison can be syntactic — without
simplifying the terms in the user’s input, numeric — comparing numeric expres-
sions, and semantic — where the external mathematical services are asked to
perform the calculations in the given context.

Each interaction node can have metadata, specifying mathematical and
educational properties of an interaction, such as difficulty of a step w.r.t. the
particular learning context, competency to be trained in the step, concepts that
this step is elaborating, specifying whether the hint is given, and so on.

Each transition can have diagnosis information in case the user’s input sat-
isfies the condition of a given transition, such as the achievement of the learner
w.r.t. the task, relevance of the answer and/or misconceptions the learner had
in the step.

Fig. 1. ActiveMath Exercise Subsystem architecture

Importantly, due to its compactness and extensibility, the ActiveMath ex-
ercise format makes it easy to build more complex representations. This has often
been requested over the last few years of the application of ActiveMathby au-
thors and users. Therefore a property of the system is that exercises can also be
fully or partially generated and the graph of interactions in such exercises can
be dynamically changed. Tutorial strategies applied to a compactly encoded ex-
ercise will enhance the exercise by introducing additional nodes, cloning existing
ones, adding more connections between them.

6 A recent development allows ActiveMath to read the feedback text aloud.



6 Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

2.5 WaLLiS format

WaLLiS is a web-based system developed at the School of Mathematics of the
University of Edinburgh. A detailed description can be read at [10]. WaLLiS
employs interactive exercises that in a way have a predetermined context as
they are designed for a specific learning situation. Yet they are adaptive in the
sense of what kind of feedback they provide. These interactive exercises are
authored in an XML format which is very similar to the initial ActiveMath one
[5], whose main characteristic was that it also employs OpenMath to represent
the formulas needed for representing the response processing conditions. This
format was a direct consequence of early experience from the system’s use and
authoring content and needs of the context where it was used. Several of the
issues mentioned in section 2.1 actually arose during this period.

In addition, in an attempt to address the reusability and ease of maintenance
of multiple parts, it was decided that it was better to link rather than nest
items and their parts. Thanks to the collobaration between the authors of this
paper the two formats are now isomorphic yet their players follow complete
different architectures, demonstrating the power of employing generic formats
that are not bound to implementation. ActiveMath has a clear client-server
architecture (described at section 5.1) and the WaLLiS system follows a series of
XSLT transformations that result to an XHTML interactive document which is
presented to the learner. Briefly, the transformation results appear on a browser
page that includes a form for the interaction, hidden elements (eg. the solution
or the hints) and embedded JavaScript that takes care of the interaction and
the communication with the server to evaluate the learner’s response, without
the learner ever leaving or submitting the page. More details are provided at
[11,?]. The main point here is that despite the differences the isomorphic formats
have been used to share exercises by transforming from one to the other and
the fact that both were adequate for two complete different implementations
provides positive indicators towards realising the ideal situation of having a
common format or at least translating automatically between them without loss
of functionality.

2.6 LeActiveMath Exercise Language

The MathDox language [8] is developed in RIACA 7 (TUE) and is based on
the former representation, influenced by DocBook 8 and OMDoc languages,
called MathBook (RIACA) [7]. OpenMath is used for mathematical formulas
here as well. The language is mainly closer to the QTI one with more flexibility
(but also increased complexity) in the response processing where specialised tags
(“if”, “then”) are used to represent the response processing.

The LeActiveMath exercise language is developed in RIACA within the
LeActiveMath project and is based on the ActiveMath exercise language

7
http://www.riaca.win.tue.nl

8
http://www.docbook.org

http://www.riaca.win.tue.nl
http://www.docbook.org


Interoperability Issues between Markup formats for Mathematical Exercises 7

with some additions, inspired by MathDox. For instance, it makes heavy use of
state variables, called “dynamic context” in MathDox. In addition the language
allows MONET queries [16], sent to the external mathematical systems.

3 Tools for Authoring and Interpretation of the Exercise
Languages

3.1 The ActiveMath Tools

The main component of the ActiveMath learning environment is the exercise
subsystem, developed by two of the authors. It comprises several components
communicating within a modular architecture. Describing this in detail is be-
yond the scope of this paper. Therefore we describe only those parts of the
exercise subsystem architecture which deal with interpretation of the knowledge
representation of the exercise steps and their generation.

Briefly, the core of the exercise subsystem consists of an Exercise Manager,
Interaction Generator and Evaluator/Diagnoser components. The Exercise Man-
ager is responsible for communicating with the database and the client (typically
a web browser). It receives the problem statement of the step and the user in-
put, forwards them further to the Interaction Generator and asks it to return the
next interaction. The Interaction Generator queries the Evaluator/Diagnoser
for diagnosis of the user’s action, and builds a new interaction based on the
result of this diagnosis.

The Interaction Generator base class provides an architecture for defining
different Interaction Generators. The default Interaction Generator used in Ac-
tiveMath is called Static Interaction Generator. It is designed for retrieving
interactions in manually authored exercises. In this case, the Evaluator has
to check whether the user’s input satisfies one of the manually authored con-
ditions provided for the current interaction, and the conditions point to the
interactions to be executed in the next step in case they are satisfied. The ben-
efit of this approach is that, instead of the Static Interaction Generator, other
specific generators can be employed. Each Interaction Generator can define it’s
own custom Evaluator/Diagnoser class, extending the basic Evaluator/Diagnoser
for more advanced queries of the mathematical services.

Since the exercise subsystem of ActiveMath allows for so-called virtual
exercises, in which the interactions are generated, writing such interaction
generators can give birth to whole classes of automatically generated exercises.
There already exist several custom interaction generators such as the “Ran-
domizer”, which extends the static one by randomizing variable values in the
manually authored exercise. Another generator defines a custom Evaluator that
queries the available services such as Domain Reasoners or CAS in each step, in
order to receive the diagnosis on the user’s actions. Based on the result of this
diagnosis, the next interaction is generated.

In order to facilitate reusability of exercises in different learning situations,
additional generators can be applied to an authored or generated exercise, in a



8 Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

similar way as the randomizer mentioned before. These generators implement
different tutorial strategies which define the sequence in which the steps are
rendered, the frequency of hints and other parameters that may vary in different
learning situations. Such a flexible system of cascading interaction generators
is the result of a careful design of an exercise language and the corresponding
engine, interpreting and rendering this language in a modular and extensible
way.

3.2 RIACA Exercise Repository Tools

The Exercise repository, developed within the LeActiveMath project, provides
an authoring tool for exercises that can be encoded in the LeActiveMath
exercise language. This authoring tool allows for constructing exercises with fill-
in-blanks and multiple-choice-questions. Exercises can have multiple steps and
connect to CAS for checking the answers of the learner. Certain randomization
of exercises is also possible. The repository itself is provided as a web-service
that serves interactive exercises that can be used directly in the web or to be
sent and rendered in another system (for example LeActiveMath).

3.3 The MathQTI engine

The MathQTI engine9 is a module of WaLLiS that interprets a MathQTI exercise
in a similar way as described in section 2.5 but in way that is separated from the
rest of the system, with the hope of reusing it as an engine for other systems.
It is worth mentioning here that for interpreting the OpenMath formulas and
handling the response processing with the Yacas system (which is used at the
background for evaluating the learner’s answer) the RIACA JSP (Java Server
Pages) tag libraries10 are used. With simple extensions and some additional in-
house coded libraries the math-qti engine provided a proof-of-concept system for
further developments of WaLLiS and other systems. This demonstrates, once
again, that once based on common standards (such as OpenMath) at least a
partial interoperability and code reusability is possible.

3.4 Protocols and web services

Within the LeActiveMath project, generic web-services support is developed
in the ActiveMath system. It consists of an OpenMath broker component,
which receives mathematical queries from the ActiveMath exercise system,
and distributes these among available web services, capable of providing an an-
swer. Among the services connected to such a broker, are Computer Algebra
systems (in our case Yacas, WIRIS and Maxima) and other mathematical sys-
tems such as Domain Reasoners, written in Prolog, that all communicate with
the ActiveMath broker in a variety of ways, including complete SOAP (Sim-
ple Object Access Protocol)11 queries, XML-RPC (Remote Procedure Call), and
9
http://sourceforge.net/projects/walis

10
http://www.riaca.win.tue.nl/products/taglib/

11
http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html#soaphead

http://sourceforge.net/projects/walis
http://www.riaca.win.tue.nl/products/taglib/
http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html#soaphead


Interoperability Issues between Markup formats for Mathematical Exercises 9

local system processes via pipes, all of them transparent to the rest of the sys-
tem and to the content authors and learners. The queries defined there have the
following parameters:

– the name of the query
– one or more formulas in OpenMath format
– context of the query defined by a set of concepts in OpenMath format
– depth of the rule application

On one hand such queries can be used for semantic comparison of the user’s
input within the condition in the transition map of the authored exercise. On
the other hand, several other queries can be sent for receiving more detailed
diagnosis of the learner’s actions and, based on such diagnosis, construct the
next node in the generated exercise.

It is worth noting that the LeActiveMath exercise language of RIACA,
used for the separate repository of interactive exercises outside the Active-
Math system, directly defines MONET queries inside the content of the exer-
cises. These queries can specify the name of the concrete CAS to be used for
evaluation. In the opposite case the available CAS is selected automatically.
Therefore, the exercises which specify the concrete CAS to be used are not guar-
anteed of reusability with other CAS. On the other hand, it can be argued that
this way authors of the exercise can be sure that the result of their query will
be as expected and therefore pedagogically more sound.

Finally, it should be mentioned that efforts are underway to define com-
mon protocols for exercise players. For example, the Remote Question Protocol
(RQP12) that allows e-learning systems to use external services for presenting
and evaluating a question. Other query languages like the MONET Mathemat-
ical Query Ontology, as well as the developments of mathematical web services
will enable more and more Interactive Learning Environments (ILE) to employ
facilities such as elaborate question players, Computer Algebra systems or other
processing engines, thus enhancing their functionalities and allowing more elab-
orate questions not limited by the features of an specific system.

4 Transforming Between Formats

We have mentioned before that several transformations are possible between
formats. For example. because of the close collaboration between the authors,
back-and-forth transformations between the WaLLiS and the ActiveMath for-
mats is possible. At least for now we are interested in the main framework of
the exercise rather than all the medatata and additional information that is in-
cluded in both of them. It is more important, at least at this phase, to be able to
automatically convert the questions statement and response processing even if
that does not entail the fully fledged result reporting and metadata annotations
that are still perhaps dependent on the context and use of the exercises.
12

http://mantis.york.ac.uk/moodle/course/view.php?id=14

http://mantis.york.ac.uk/moodle/course/view.php?id=14


10 Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

Similarly, exercises from QTI have been transformed to the WaLLiS format.
This was certainly easier for the first version of QTI (v1.2) which was more de-
scriptive in nature than v2. Since we are able to transform between the WaLLiS
format and the ActiveMathand LeActiveMathone it is hoped that in the
future transformations from QTI to these formats will also be possible. It has
to be said here that some exercise types (such as matching and puzzles) are
worth investigating further as until now they were not our primary target. On
the other hand we have found that only simple exercises from the WaLLiS for-
mats (without multiple steps and interactions) were transformable to the QTI
one. In addition, exercises from QTI v2 are easily transformed only when these
use the predefined response processing templates. Otherwise, we have found that
exercises that were authored using the full flexibility of QTI v2 were impossible
to transform in a generic way (e.g. an all-purpose XSLT) mainly due to the
prescriptive nature of QTI v2. Once extra knowledge on the rationale behind
the exercise, the flags it uses, and the naming conventions are included to the
transformation process the task is simplified. Unfortuanately the fact that hu-
man intervention is required complicates and makes the process time consuming.
This is certainly a matter worth investigating further.

Some mappings that are certainly planned and partially made include the
back-and-forth mapping between MathDox, ActiveMath, WaLLiS and Math-
QTI. For example, one of the expected outcomes of the LeActiveMath project
is the interoperability of ActiveMath and LeActiveMath exercise languages.
The mappings are mostly straightforward, but not all of the formats are iso-
morphic. Some of them are bound to a particular implementation rather than
designed with reusability in mind. It is certain that the notion of dynamic states
and the variable flags used in MathQTI require additional knowledge of the con-
text making the automatic translation even harder. To avoid these problems it
seems necessary to avoid encoding information which provide additional knowl-
edge such as pedagogical knowledge rather than just the exercise itself. It is in
the benefit of everyone who is involved in the process of authoring and deploy-
ing content in real situations, to be able to author and use exercises in different
educational situations and goals. We believe that as with other cases where in-
teroperablity was achieved mainly due to the separation of layers (such as the
early days of XML and the separation of content and presentation) the dream
of interoperablity will be achieved if more formats avoid as much as possible to
mix pedagogical knowledge or other information with the response processing.

5 Conclusion

It is clear from this paper that further work is necessary in order to identify the
most generic exercise format suitable for most of the applications and try to join
the efforts of the involved communities and produce such a uniform format. This
seems to be reasonable, since all the formats considered in this paper (except
QTI) not only share common properties, but are not far from being isomorphic.
By reaching this common agreement, all the involved communities would gain



Interoperability Issues between Markup formats for Mathematical Exercises 11

variety of tools and players, developed by each side, that will become reusable
for others but more importantly a common pool of exercises and content that
can be reused and shared between them.

Acknowledgement

Part of research for investigating the knowledge representation of interactive
exercises was supported by the iClass project, funded under the FP6 Framework
Program of the European Community – (Contract IST-507922).

This publication is also partly a result of work in the context of the LeAc-
tiveMath project, funded under the 6th Framework Program of the European
Community – (Contract IST-507826).

References

1. D. Bacon. Review of QTI v2.0. Available online:
<http://support.imsglobal.org/question/qtiSupportIndex.html>

2. A. Cohen, H. Cuypers, D. Jibetian, M. Spanbroek, LeActiveMath Exercise Lan-
guage, Deliverable D7., LeActiveMath Project, FP6 Framework, 2005.

3. A. Cohen, H. Cuypers, E.R. Barreiro, H. Sterk Interactive Mathematical Documents
on the Web. Algebra, Geometry, and Software Systems 2003, pages 289–307, 2003.

4. Global Learning Consortium. IMS Question & Test Interoperability Specification:

A Review <http://www.imsglobal.org/question/whitepaper.pdf>

5. G. Goguadze, E. Melis, C. Ullrich and P. Cairns, Problems and Solu-
tions for Markup for Mathematical Examples and Exercises. In Proceedings
of the Second International Conference on Mathematical Knowledge Man-
agement, MKM03, Andrea Asperti (ed.). <http://www.ags.uni-sb.de/∼ilo/articles/

EncodingExoExa.pdf>

6. G. Goguadze, A.G. Palomo, E. Melis, Interactivity of Exercises in Active-
Math. In Proceedings of the 13th International Conference on Computers in
Education (ICCE2005), 2005.

7. MathBook Standard, Research Institute for Applications of Computer Alge-
bra <http://www.riaca.win.tue.nl/products/mathbook/>

8. MathDox Website <http://www.mathdox.org>

9. M. Mavrikis. MathQTI draft specification overview. Available online at
<http://www.maths.ed.ac.uk/mathqti/docs/v0p3/mathqti v0p3.pdf>

10. M. Mavrikis and A. Maciocia. Wallis: a web-based ILE for science and engi-
neering students studying mathematics. Supplement Proc. of the International
Conference on AIED, 2003.

11. M. Mavrikis and A. González Palomo. Mathematical, Interactive Exercise
Generation from Static Documents. Electronic Notes in Theoretical Computer
Science, 93:183–201, 2004.

12. C. Miligan. Question and test interoperability (QTI): Extending the
specification for mathematics and numerical disciplines. LTSN maths-
CAA series, Nov 2003. Available online at <http://ltsn.mathstore.ac.uk/articles/

maths-caa-series/nov2003/>

http://support.imsglobal.org/question/qtiSupportIndex.html
http://www.imsglobal.org/question/whitepaper.pdf
http://www.ags.uni-sb.de/~ ilo/articles/EncodingExoExa.pdf
http://www.ags.uni-sb.de/~ ilo/articles/EncodingExoExa.pdf
http://www.riaca.win.tue.nl/products/mathbook/
http://www.mathdox.org
http://www.maths.ed.ac.uk/mathqti/docs/v0p3/mathqti_v0p3.pdf
http://ltsn.mathstore.ac.uk/articles/maths-caa-series/nov2003/
http://ltsn.mathstore.ac.uk/articles/maths-caa-series/nov2003/


12 Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

13. M. Mavrikis. Thoughts on MathQTI (see ”documents on MathQTI” section
of the ”serving maths” project: <http://maths.york.ac.uk/serving maths/mod/resource/

view.php?id=103>). Technical report.
14. Minutes of 1st MathQTI workshop. Available online:

<http://maths.york.ac.uk/serving maths/mod/book/view.php?id=154>

15. E. Melis, E. Andrès, J. Büdenbender, A. Frischauf, G. Goguadze, P. Lib-
brecht, M. Pollet, and C. Ullrich. ActiveMath: A generic and adaptive
web-based learning environment. International Journal of Artificial Intelli-
gence in Education, 12(4):385–407, 2001.

16. MONET: Mathematics on the Net, EU Project <http://monet.nag.co.uk>

17. OMDoc: An Open Markup Format for Mathematical Documents,
<http://www.mathweb.org/omdoc>

18. OpenMath Society Website, <http://www.openmath.org>

http://maths.york.ac.uk/serving_maths/mod/resource/view.php?id=103
http://maths.york.ac.uk/serving_maths/mod/resource/view.php?id=103
http://maths.york.ac.uk/serving_maths/mod/book/view.php?id=154
http://monet.nag.co.uk
http://www.mathweb.org/omdoc
http://www.openmath.org

	Interoperability Issues between Markup formats for Mathematical Exercises
	Giorgi Goguadze, Manolis Mavrikis, Alberto González Palomo

