Matracas.org
>
Sentido
>
Demo
QMath:en
Maxima
Yacas
Mathematica®
Maple™
LaTeX:en
Loading...
OpenMath
MathML
Variables
Function
Arithmetic
a
+
b
a
b
a
b
n
!
a
−
b
a
b
x
n
2
x
∑
x
=
a
b
x
∏
x
=
a
b
x
x
−
a
lcm
a
b
gcd
a
b
round
x
quot
a
b
a
mod
b
trunc
x
min
a
b
max
a
b
x
x
ⅇ
π
ⅈ
a
+
b
ⅈ
ℜ
c
c
¯
r
a
ℑ
c
arg
c
Transcendental functions
ⅇ
x
ln
x
log
a
x
sin
x
tan
x
sec
x
cos
x
cot
x
csc
x
arcsin
x
arctan
x
arcsec
x
arccos
x
arccot
x
arccsc
x
Calculus
∂
x
x
∂
n
x
1
2
∂
x
,
y
x
y
∫
x
d
x
∫
a
b
x
d
x
a
b
a
b
lim
x
→
x
0
x
∞
a
b
a
b
∇
f
∇
2
v
f
curl
v
f
div
v
f
Sets
ℙ
ℕ
ℤ
ℚ
ℝ
ℂ
x
∈
X
X
⊂
Y
X
∪
Y
X
×
Y
∅
card
X
x
∉
X
X
⊄
Y
X
∩
Y
X
\
Y
x
y
z
Logic and relations
⊤
x
∨
y
x
⊻
y
1
∃
x
.
(
x
=
1
)
⊥
x
∧
y
¬
x
1
∀
x
.
(
x
=
1
)
x
⇔
y
x
⇒
y
x
=
y
x
<
y
x
>
y
x
≈
y
x
≠
y
x
≤
y
x
≥
y
Functions
Dom
f
Im
f
Id
x
f
-1
f
○
g
0
0
1
1
0
x
=
0
1
x
=
1
x
otherwise
Linear algebra
a
b
c
d
M
T
M
M
r
,
c
v
1
v
2
v
3
v
·
u
v
×
u
v
i
Statistics
median
x
1
x
2
x
3
mode
x
1
x
2
x
3
x
1
x
2
x
3
¯
f
¯
σ
x
1
x
2
x
3
σ
f
µ
i
c
x
1
x
2
x
3
µ
i
c
f
var
x
1
x
2
x
3
var
f
alg1
one
zero
bigfloat1
bigfloat
m
r
e
bigfloatprec
f
r
p
arith1
x
a
b
gcd
a
b
lcm
a
b
a
−
b
a
+
b
a
b
∏
x
=
a
b
x
x
n
2
x
∑
x
=
a
b
x
a
b
−
a
calculus1
∫
a
b
x
d
x
∂
x
x
∫
x
d
x
∂
n
x
1
2
∂
x
,
y
x
y
complex1
arg
c
a
+
b
ⅈ
r
a
c
¯
ℑ
c
ℜ
c
fns1
Dom
f
appdomain
d
Id
x
Im
f
f
-1
λ
x
.
(
x
)
f
○
g
inv
-
f
range
f
inv
+
f
integer1
n
!
factorof
a
b
quot
a
b
a
mod
b
interval1
a
b
a
b
a
b
a
b
a
b
a
b
linalg1
M
M
r
,
c
v
⊗
u
v
·
u
M
T
v
i
v
×
u
linalg2
a
b
c
d
v
1
v
2
v
3
limit1
above
below
both_sides
lim
x
→
x
0
x
unspecified
list1
a
b
c
λ
x
.
(
x
)
→
a
b
c
X
|
λ
x
.
(
p
x
)
logic1
x
∧
y
x
⇔
y
⊥
x
⇒
y
¬
x
x
∨
y
⊤
x
⊻
y
mathmltypes
complex_cartesian
complex_polar
constant
fn
integer
list
matrix
rational
real
set
vector
minmax1
max
a
b
min
a
b
multiset1
X
×
Y
∅
x
∈
X
X
∩
Y
multiset
x
y
z
x
∉
X
X
⊄
Y
X
⊈
Y
X
⊊
Y
X
\
Y
card
X
X
⊂
Y
X
∪
Y
nums1
nnn
nnn
b
ⅇ
γ
ⅈ
∞
NaN
π
p
q
piece1
otherwise
x
x
p
0
0
1
1
0
x
=
0
1
x
=
1
x
otherwise
quant1
1
∃
x
.
(
x
=
1
)
1
∀
x
.
(
x
=
1
)
relation1
x
≈
y
x
=
y
x
≥
y
x
>
y
x
≤
y
x
<
y
x
≠
y
setname1
ℂ
ℕ
ℙ
ℚ
ℝ
ℤ
rounding1
x
x
round
x
trunc
x
set1
X
×
Y
∅
x
∈
X
X
∩
Y
λ
x
.
(
x
)
→
a
b
c
x
∉
X
X
⊄
Y
X
⊄
Y
X
⊊
Y
X
\
Y
card
X
x
y
z
X
⊂
Y
X
|
λ
x
.
(
p
x
)
X
∪
Y
s_data1
x
1
x
2
x
3
¯
median
x
1
x
2
x
3
mode
x
1
x
2
x
3
µ
i
c
x
1
x
2
x
3
σ
x
1
x
2
x
3
var
x
1
x
2
x
3
s_dist1
f
¯
µ
i
c
f
σ
f
var
f
transc1
arccos
x
arccosh
x
arccot
x
arccoth
x
arccsc
x
arccsch
x
arcsec
x
arcsech
x
arcsin
x
arcsinh
x
arctan
x
arctanh
x
cos
x
cosh
x
cot
x
coth
x
csc
x
csch
x
ⅇ
x
ln
x
log
a
x
sec
x
sech
x
sin
x
sinh
x
tan
x
tanh
x
veccalc1
curl
v
f
div
v
f
∇
f
∇
2
v
f