
MathWebSearch 0.4
A Semantic Search Engine for Mathematics

Michael Kohlhase1,2, Ştefan Anca1,2, Constantin Jucovschi1, Alberto González
Palomo1,3, and Ioan A. Şucan4

1 Safe and Secure Cognitive Systems, DFKI Lab Bremen
$firstname.$lastname@dfki.de

2 Computer Science, Jacobs University Bremen
$initial.$lastname@jacobs-university.de

3 Computer Science, Saarland University
Alberto.Gonzalez@matracas.org

4 Computer Science, Rice University,
isucan@rice.edu

Abstract. We present a search engine for mathematical formulae. The
MathWebSearch system harvests the web for content representations
of formulae and indexes them with substitution tree indexing. In version
0.4 we have parallelized and distributed the search server and augmented
the web interface with a new JavaScript-based visual editor for content
math formulae. Furthermore, we have extended the query language by
generalization, variants, unification, and text search facilities, which can
also be mixed.
Our experiments show that this architecture results in a scalable appli-
cation.

1 Introduction

As the world of information technology grows, being able to quickly search data
of interest becomes one of the most important tasks in any kind of environment,
be it academic or not. We present the MathWebSearch system; a search
engine that addresses the problem of searching mathematical formulae from a
semantic point of view i.e. finds formulae by their structure and meaning not
via their presentation (as a standard engine like Google does).

In [KŞ06] we have presented the motivation, query language, and web front
end of MathWebSearch 0.2. In [KK07] we have re-examined the value propo-
sition of semantic search for mathematical knowledge homing in on the benefits
and sacrifices for the user induced by the various search approaches [You06,MM06,LM06].
The result of this analysis is MathWebSearch 0.4 which we describe in this
paper. The new version features significant efficiency gains, new management
features, advanced searching capabilities, and a new user interface. The Math-
WebSearch system (see [Mat07] for details) is released under the Gnu General
Public License [Fre91]. MathWebSearch 0.3 which features some of the ex-
tensions reported in this paper is available at http://search.mathweb.org, an

1. INTRODUCTION

integrated prototype of MathWebSearch 0.4 will be available for testing at
http://betasearch.mathweb.org in April 2008.

In the next section we will introduce the new search capabilities by looking
at the types of queries MathWebSearch supports, provide a use case for each
and show how naturally one can express the queries. Then we (section 2) show
how the new user interface supports formula editing in such queries and in
section 3 we get more into the the technical side of MathWebSearch. For that,
a brief description of the new MathWebSearch infrastructure will be given
which now supports distribution and work balance among several computers,
hence becoming more scalable. Afterwards, we will describe the process which
a mathematical expression undergoes before it is inserted in the index. Further,
we have a brief look at the data structure used to index the terms and at the
basics of performing search operations. It will then continue with the part of
result generation and combining these with the searches over natural language.

1.1 A Unification-Based Query Language for Mathematics

As we have already mentioned, the power of MathWebSearch consists in its
capability of indexing mathematical content by using formulae structure and
semantics. Even more power is gained if we combine it with a standard search
engine of natural language. This fusion makes the search engine more expressive
and context driven. More details about this fusion is given in the section 4.

Very often one finds himself in the position that he remembers parts of a
formula but does not remember details like coefficients or arguments. This is the
typical use case where instantiation queries might come of use as they find
indexed terms which are obtained after replacing the parts marked by the user as
unknown with some terms i.e. they become instantiated. For example consider
an engineer trying to solve a mathematical problem such as finding the power
of a given signal s(t). Of course our engineer is well-versed in signal processing
and remembers that a signal’s power has something to do with integrating its
square, but has forgotten the details of how to compute the necessary integrals.
He will therefore call up MathWebSearch to search for something that looks
like ∫ min

max
f (x)2dx (1)

Here and everywhere we mark query variables as named boxes5. One of the
search results will be the page containing the term (Parseval’s theorem)

1
T

∫ T

0

s2(t)dt =
∞∑

k=−∞

‖ck‖2 (2)

5 Note that this alredy gives us a more expressive query language than e.g. regular
expressions supported by some text-based search engine, since we can use variable
co-occurrences to query for co-occurring subterms.

Rev: 366, March 17, 2008 2 intro.tex

1. INTRODUCTION

about the energy of a signal s. This not only confirms the definition of the energy
(in the surrounding text), but also gives a way to compute it via the Fourier
coefficients ck of s. Note that here the default setting pays off that instructs the
search engine to also report subterms of indexed terms which match the given
search expression.

Let us now consider a student who encounters
∫

R2 | sin(t) cos(t)|dt and wishes
to know if there are any mathematical statements (like theorems, identities, in-
equalities) that can be applied to it. Indeed, there are many such statements (for
example Hölder’s inequality), they can be found using generalization queries.
The idea behind answering generalization queries is that the index marks uni-
versal6 variables in subterms as generalization targets. Hence the search engine
looks for terms in the index which after instantiating the universal identifiers
become equal to the query. For our example, we have in the index the term (we
reuse the box notation for generalization targets in the index)

∫
D

∣∣∣f (x)g (x)
∣∣∣ dx ≤ (∫

D

∣∣∣f (x)
∣∣∣p dx) 1

p
(∫

D

∣∣∣g (x)
∣∣∣q dx) 1

q

(3)

which the search engine instantiates x 7→ t, f 7→ sin, g 7→ cos, D 7→ R2 in order
to find the generalization query. Note that the variant query

∫
R2 | sin(t) cos(2t)|dt

will not find Hölder’s inequality since that would introduce inconsistent substi-
tutions x 7→ t and x 7→ 2t.

A very similar idea is used in variation queries where the indexed terms
are searched to match the seach expression but only renamings of generic terms
are allowed. This type of queries prove to be helpful when the structure of the
term needs to be maintained.

Sometimes, however, one is in the position that the searching criteria is
somewhere between instantiation queries (i.e. parts are unknown) and gener-
alization queries (parts are probably instantiated already). In this case we give
the possibility to pose unification queries. As the name suggests, the query
just finds terms which are unifiable with the search expression. A query like
g2 cos(x) + b sin(

√
y) would match the term a cos(t) + b sin(t) as we can sub-

stitute x 7→ √y, t 7→ √y, a 7→ g2, b 7→ b to get the term g2 cos(
√
y)+b sin(

√
y).

It is easy to see that unification queries include but are not limited to the
results of the instantiation, generalization and variation queries. Hence one might
use it to combine the other three search queries. Sometimes, however, it might
be challenging to see the substitutions that the search engine applied to both
indexed term and search term for unification. For that reason, we introduce in
a query language that supports all four previously mentioned query types and

6 We consider an identifier as universal, if it can be instantiated without changing
the truth value of the containing expression. In formal repreentations like first-order
logic, such variable occurrences can be effectively computed, but in semi-formal
settings like mathematical textbooks, they have to be approximated by heuristical
methods; see the discussion in the conclusion for details

intro.tex 3 Rev: 366, March 17, 2008

2. THE MATHWEBSEARCH WEB USER INTERFACE

supports “where” clauses. An example for such a query would be:

select instance

(∫
DOM

1√
2π

exp {B}

)
where B=variation(x2 + jy2) (4)

In the current implementation of MathWebSearch, where clauses are incorpo-
rated in the original query and are evaluated in one run i.e. there is no efficiency
loss in compared to simple queries.

2 The MathWebSearch Web User Interface

One of the results of the value-centered analysis in [KK07] was that the power
of formula search engines like MathWebSearch will only become useful to a
user, if the sacrifices involved in using it are small.

Therefore we have experimented with integrating MathWebSearch into
editing environments (e.g. the emacs editor [Pes06]) and as a search plugin
for the FireFox 2 or Internet Explorer 7 search bar. The input in this case
is the term representation (called
“string representation” in [KŞ06]
and documented there); this in-
cludes the internal representation of terms (prefix notation) and any expression
that Mathematica is able to parse. To require terms to be only interpreted as
prefix notation, prepend a # to them (for example #eq(id(x),@value)).

But these approaches still require the user to learn a specific notation for
MathWebSearch queries, and are therefore geared more for users who have
already seen experienced the benefits of semantic search. For new users, we
need a web-based interface that is simple and intuitive enough to encourage
experimentation without a learning curve. In fact, we expect many of our users
to arrive by chance and lack the patience to do more than a few clicks before
abandoning the web page. For this clientele we have developed a novel formula
editor that interfaces to MathWebSearch, which will act as the primary web
interface to the system. Our formula editor is a typical linear/palette input
hybrid with the difference that the internal representation is very loosely coupled
to the input and output notations, which enables switching them easily according
to the user’s preferences. The internal representation is either OpenMath or
Content MathML depending on the application. It would be possible to use
some other XML encoding.

The input syntax is selectable so that users already familiar with some of
the supported ones can type directly as they are used to and also paste some
expressions in those notations. We do not intend to parse any arbitrary formula
originating from those external systems (which would be the task of a complete
OpenMath “phrasebook”), but rather avoid making the user stop to think how
to type simple things such as sin 3x which can be input as sin(3*x), Sin[3x],
sin(3x), Sin(3*x) depending on the selected input notation. As a side effect, the
formula editor also works as a translator: when switching to another syntax, the
internal representation is translated back (unparsed) to the new linear syntax.

Rev: 366, March 17, 2008 4 interface.tex

2. THE MATHWEBSEARCH WEB USER INTERFACE

Fig. 1. Searching for an integral: the variables n and r are set to be generic by the
user, and the bound variable x is generic by default. Most of the palettes are collapsed,
with only the “Variables” and “Calculus” ones open and visible here.

The palettes contain the content encoding of the formulas, which is unparsed
for insertion in the input field at the current cursor location. This way, using the
palettes serves as documentation for the linear input syntax, enabling a smooth
transition from palette-based entry to direct typing. In contrast to other palette-
based editors, the placeholders in the formulas have default content so that just
clicking once in a button inserts a complete formula.

Undo/redo is provided by the browser through the linear input text field. This
is enough because it is translated immediately after each change to the internal
representation, and from that the Presentation MathML form is generated for
display.

The top palette contains the variables used in the current formula, and is
updated dynamically as the formula changes. Free variables are listed above the
horizontal line, and bound variables under it. Each list is ordered by the position
of the last usage of each variable so that when writing a new formula, the last
typed variables appear on top to keep them visible even if the variable list grows
past the bottom of the page.

The first column is the variable name, and the rest are flags specifying
whether it is a generic variable, whether it might match a sequence of subex-
pressions, and finally whether it is a function or not. Deleting a variable from
the input does not reset those flags: if it is reintroduced they will be recovered.

The function flag is unrelated to MathWebSearch and needed only by the
parser, as we allow constructions like x(y + 2) to mean the multiplication of an
implicit variable x by (y + 2).

interface.tex 5 Rev: 366, March 17, 2008

3. THE MATHWEBSEARCH SERVER

Single letters are always considered variables if not defined, while undefined
words are treated as either products of single-letter variables or new implicit
variables depending on the grammar for the current input syntax.

Syntax errors are reported by tinting the input field red, but this is unsat-
isfactory as finding the problem requires a familiarity with the input syntax
grammars that can not be expected from most users, and we are investigating
ways of giving them useful feedback, finding a balance between overly generic
indications (like the current coloring) and complete but cryptic grammar de-
scriptions.

There are however many errors that a grammar check does not uncover but
can be realized by the user when seeing the final presentation display.

For instance, intending f to be a function in f(x) but getting a multiplication
instead: when f is interpreted as a function variable, there is a bigger separation
between it and the next term than if it was an object variable being multiplied.
In general, any symbols for which the input syntax and the presentation are
unique and sufficiently distinct benefit from this effect (e.g. absx → |x|) since
the double translation linear → content → presentation amplifies the difference
between expected and actual result.

We implemented the formula editor using only web standards: JavaScript,
XHTML, XSLT, MathML and CSS. This way much code can be shared be-
tween the web interface for MathWebSearch and the FireFox extension Sen-
tido [Pal06]. We intend to put as much as possible of the algorithms into XSLT so
that they can be reused in software systems implemented in different program-
ming languages: XSLT processors are available as libraries for many languages,
but the other technologies we use are not so portable. We could then reuse the
formula editor server-side to render the formulas as images for browsers that
don’t support MathML, and specifically the parser for indexing plain text doc-
uments.

3 The MathWebSearch Server

The MathWebSearch server is a distributed application consisting of

Search Nodes that run search servers, index builders, and web crawlers. Some
of the nodes contain “meta-servers” that act as gateways to others; they
forward queries to a specified set of nodes and merge the received results.
Thus the collection of search nodes is organized as a tree for efficient query
distribution when using a large number of nodes. In case of failure of a node,
the only effect is that the results that would have been produced by that
node are not received by the web server.

Database Servers that store the indexed documents here realized in MySQL.
A Web Server to Communicate with Browser Clients that combines search

results from the root meta-server with the documents from the databases.
An Admin Server that allows to assign the different tasks to the available

nodes, or to add automatic load balancing if needed. The admin server also
monitors the search nodes for node failures and re-directs search.

Rev: 366, March 17, 2008 6 system.tex

3. THE MATHWEBSEARCH SERVER

Fig. 2. System Architecture

A search server is able
to run multi-threaded
searches. In the age of
multi-core CPUs, this be-
comes an important fea-
ture. The number of
threads used in the search
is chosen at the index
building step. By con-
struction, the theoretical
speedup is linear. How-
ever, depending on the query, one of the threads may have to find all results
and then no speedup is achieved. If the threads have balanced amount of work
the achieved speedup is linear – or even super-linear due to cache effects. To avoid
memory allocations and cache misses, the same area of memory – a memory pool
– is being used in different steps of the search.

We have tested our implementation on http://functions.wolfram.com,
which contains 90,000 mathematical formulae and yields an index with 1.5 mil-
lion subterms (memory footprint 250MB). Typical query execution times are in
the range of milliseconds. The search in (1) takes about 1 ms for instance. Per-
formed experiments indicate that index sizes have little effect on search times,
even for more complex searches.

The distributed architecture and multi-threaded implementation of the search
nodes is the main contribution of MathWebSearch 0.3 over the previous ver-
sion presented in [KŞ06]. It leads to significant efficiency gains (reducing mem-
ory footprint to a third and speeding up searches by an order of magnitude) and
makes the system scalable to larger indexes.

3.1 Input Processing

MathWebSearch can process any Xml-based content representation of math-
ematical formulae: MathML [ABC+03] and OpenMath [BCC+04] are sup-
ported directly, other formats e.g. Wolfram Research’s Mathematica are sup-
ported if a converter for them is provided.

(1) Mathematical
expression:
f(x) = y

(3) String repre-
sentation:
eq(@f(@x),@y)

(2) Content MathML:
<apply><eq/>

<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
<ci>y</ci>

</apply>

Fig. 3. Converting to MathMLQ

Consider the example on
the right: We have the stan-
dard mathematical notation of
an equation (1), its Content
MathML representation (2),
and the term we extract for in-
dexing (3) Note that in the in-
ternal (MathMLQ) syntax, the
query variables and the general-
ization targets in the index are
represented with identifiers starting with the @ character. As previously stated,

system.tex 7 Rev: 366, March 17, 2008

3. THE MATHWEBSEARCH SERVER

any mathematical construct can be represented in a similar fashion. See [Mat07]
for more details and syntax of search queries.

As we can see, terms like the one in the figure are not stored in their orig-
inal form in the index. MathWebSearch 0.4 stores formulas with universal
variables in their generalized form. In the example, we identify f , x and y as
universals and store the formula in generalized representation in the index. Thus,
the above formula is stored, for example, as @1(@2)=@3, where the @ variables
can be later matched against any term at search time. The step that takes care
of identifying the universal variables in the mathematical formulas is done as
a pre-processing step by a variable spotter. This utility goes through the in-
put MathML formulas and annotates all the generic (universal) variables with
unique identifiers, before these terms are stored in the index. The variable spot-
ter does not discard bound variable information. For example, f(x) + 2 = x ∗ y
will be transformed into @10(@11) + 2 = @11 * @13, before being turned into
prefix notation. This enables search queries where these generic terms stored in
the index can be instantiated or unified at search time.

An extensible framework for approximate search is also provided. For exam-
ple, the user can easily perform a search for eq(x, 5) but specify that numbers
within range of 1 also match. eq(x, 4) or eq(x, 6) will then also be considered
results. With the same extension we can catch typos like fibonaci(x) and return
fibonacci(x) as well.

3.2 Indexing Mathematical Formulae

Fig. 4. An Index with Five Terms

For indexing mathematical formulae
on the web, we will interpret them as
first-order terms and index them with
a form of tree-based indexing called
substitution-tree indexing [Gra96] As
the name already suggests, the tree has
substitutions in each node and satisfies
the following conditions:

– Each node is either leaf or has at
least two sons.

– The substitution at the root of the
tree is of from {Q → τ} where Q is
some distinguished element of al-
phabet and τ is some term.

– Let σ1, σ2, ... σk represent substi-
tutions along the path from root to a leaf, σ1 being the substitution at the
root of the tree. Then
• successive application of substitutions from root to a leaf results in one

of the indexed terms i.e. σ1 ◦ σ2 ◦ ... ◦ σk = {Q → t} where t is one of
the indexed terms.

• a substitution σi substitute different elements i.e.DOM(σi) 6= DOM(σj)
for i 6= j.

Rev: 366, March 17, 2008 8 system.tex

3. THE MATHWEBSEARCH SERVER

Figure 4 shows a typical index for the terms h(f(z, a, z)), x, g(f(z, y, a)),
g(f(7, z, a)), and g(f(7, z, f)). For clarity we also present the term we get if
we apply all the substitution starting from the root of the tree. The subterms
@integer are the generic subterms; for details see [KŞ06]. To each of the indexed
terms we attach an identifier that relates the term to its XPointer [GMMW03]
reference and other relevant data (see below).

When building indexes for multi-threaded search, we in fact build multiple
indexes, equal to the number of desired threads. This is transparent to the ap-
plication using the index data-structure and it is guaranteed that the different
threads will have approximately equal numbers of terms in their indexes. This
is needed for having approximately equal search times the search threads and
thus limit the synchronization time.

3.3 Reporting Results

For a search engine for mathematical formulae we need to augment the set of
result items (usually page title, description, and page link) reported to the user
for each hit. As typical pages contain multiple formulae, we need to report the
exact occurrence of the hit in the page. We do this by supplying an XPointer
reference where possible. Concretely, we group all occurrences into one page item
that can be expanded on demand. Within this we order the groups by number
of contained references.

Fig. 5. Result showing the substitutions (matches) for each generic variable.

For any given result a detailed view is available (see Figure 5). This view
shows the exact term that was matched and the used substitution (a mapping
from the query variables specified by generic terms) to match the found result. A

system.tex 9 Rev: 366, March 17, 2008

4. COMBINED SEARCH

more serious problem comes from the fact that — as mentioned above — content
representations are often the source from which presentations are generated.
If MathWebSearch can find out the correspondence between content and
presentation documents, it will report both to the user. Wherever possible we
present two links as results: one is the source link , a link to the document we
actually index, and the default link , a link to the more esthetically pleasing
presentation document.

4 Combined Search

The MathWebSearch engine is also enriched with the option of performing
parallel text-search. The search capabilities described above become more pow-
erful by allowing a query of a string and a formula at the same time, thus leading
to more precise results. For our example, let us consider the use case where an
engineer who has graduated a few years back from college, needs the formula for
the probability density function (PDF) of two random variables Y = X1 + X2

on his new project. The formula that the engineer is looking for is actually
f(y) =

∫
f(y|x1)f1(x1), using marginal probabilities. But our engineer only re-

members something about needing the joint PDF of the sum and one of the
variables to calculate f(y). Since the engineer doesn’t remember the exact for-
mula for the joint PDF f(y, x1) = f(y|x1)f1(x1) either, she would like to enter
the search query f (x , y), which would match a large part of the formulae in the
index and is therefore unsuited for searching7. With the text search function-
ality, the engineer adds the string queries "random" and "variable", to help
narrow down the search. Of course, there are many documents which contain the
word variable in them, but only few that will also contain the specified formula.
The returned intersection results all fit in one page, with the document entitled
”Sums of Random Variables” listed near the top of the first page of results. We
see that even if both the formula and string queries are very vague the intersec-
tion result set is narrowed down to a handful of documents, which can be easily
browsed over in order for their relevance to be determined for the user.

The combined math and text search facility is realized in MathWebSearch
by combining it with the Nutch system, a text-based search engine built on the
open-source Lucene [The06] architecture by supplying a crawler, a link-graph
database, parsers for HTML and other document formats. MathWebSearch
0.4 keeps an additional Lucene-based text index and connects formula and text
search and to these components in order to obtain two different sets of results
which are merged by intersection and then presented as output. A combined
math+text search works as follows:

7 In fact, in earlier versions of MathWebSearch, such a query would have been akin
to a “denial of service attack” on the system, since the search engine would have
computed all matches before returning (the whole index as) a result. In Math-
WebSearch 0.4 the search engine only computes and returns a limited number of
answers per query; additional ones can be queried by giving a result offset.

Rev: 366, March 17, 2008 10 combined.tex

5. CONCLUSIONS AND FUTURE WORK

– Use the math query on MathWebSearch and get a ranked set of results
RM

– Use the text query on Nutch and get a ranked set of results RN

– Intersect the two result sets RM ∩ RN by ranking heuristic and supply the
result list

The question of ranking search results for formula queries is largely unexplored
territory, especially in the context of combined math + text search. We are cur-
rently exploring several approaches for the ranking of formula search results:
match frequency, substitution size, familiarity of substituted constants, formula-
class (prefer definition/theorem/. . .), formula-rank (prefer formulae that are fre-
quently re-used/referenced). The score of query q for document d in Nutch
correlates to the cosine-distance or dot-product between document and query
vectors in a Vector Space Model (VSM) of Information Retrieval. When con-
sidering the combined results, the question of blending in the rankings of the
two different sets of results to create a single consistent one gets even more
complicated. The ranking heuristic needs to look at the relevance of the results
by analyzing the result sets from the two individual searches with respect to
size and distribution. In our simulations attempts so far, we are focusing on
Gaussian-modelled distributions.

5 Conclusions and Future Work

We have presented a scalable search engine for mathematical formulae on the
Internet. In contrast to other approaches, MathWebSearch uses the full con-
tent structure of formulae, and is easily extensible to other content formats. We
will continue developing MathWebSearch into a production system.

A current weakness of the system is that it can only search for formulae
that match the query terms up to α-equivalence or some previously defined
approximation like small edit distance. Many applications would benefit from
stronger equalities for instance. Our search in the running example might be
used to find a useful identity for

∫ 0

∞ f(x) · g(x)dx, if we know that s(x) · s(x) =
s2(x). MathWebSearch can be extended to a E-Retrieval engine (i.e. search
modulo a an equational theory E or logical equivalence) without compromising
efficiency by simply E-normalizing index and query terms (see [NK07] for a first
implementation).

In the long run we plan to extend MathWebSearch, so that it can take
more document context information into account, i.e. not just keywords from
the text around the formulae but e.g. the topology of theories in the OMDoc
format [Koh06]: It would be very useful, if we could restrict searches to formulae
that are consistent with current (mathematical) assumptions.

Finally we would like to allow specification of content queries using more
largely known formats, like LATEX: strings like \frac{1}{x^2} or 1/x^2 could
be processed as well. We are currently working on translating the ca. 450.000
TEX/LATEX articles on Physics, Mathematics, and Computer Science in the Cor-
nell ePrint archive (see http://www.arXiv.org) to content MathML, to make

concl.tex 11 Rev: 366, March 17, 2008

5. CONCLUSIONS AND FUTURE WORK

MathWebSearch accessible for a larger group of users [SK]. We estimate that
this collection contains in the order of 108 non-trivial formulae, making this col-
lection a real scalability challenge for MathWebSearch. In such a setting the
variable spotter for identifying universal variables becomes a nontrivial piece of
the document processing infrastructure. We need to utilize (shallow?) linguistic
technologies to reliably analyze phrases like “Let f and g be functions from N to
R. . . ” that mark the identifiers f and g as universal and to retrieve the associ-
ated sortal restrictions. Note that the linguistic capabilities have of the variable
spotter have to be considerable to detect the difference between “. . . where c is a
natural number” and “. . . where x is the number between 1 and n, such that. . . ”
(only c universal) or to detect that universals in a negative scope are indeed
existential.

References

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan
Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael
Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert
Sutor, and Stephen Watt. Mathematical Markup Language (MathML)
version 2.0 (second edition). W3C recommendation, World Wide Web
Consortium, 2003. Available at http://www.w3.org/TR/MathML2.

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar,
Marc Gaetano, and Michael Kohlhase. The Open Math standard, ver-
sion 2.0. Technical report, The Open Math Society, 2004. http://www.

openmath.org/standard/om20.
[Fre91] Free Software Foundation. Gnu general public license. Software License

available at http://www.gnu.org/copyleft/gpl.html, 1991.
[GMMW03] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. Xpointer

framework. W3C recommendation, World Wide Web Consortium W3C,
25 March 2003.

[Gra96] Peter Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag, 1996.
[ICW06] Tetsuo Ida, Jacques Calmet, and Dongming Wang, editors. Proceedings

of Artificial Intelligence and Symbolic Computation, AISC’2006, number
4120 in LNAI. Springer Verlag, 2006.

[KK07] Andrea Kohlhase and Michael Kohlhase. Reexamining the MKM Value
Proposition: From Math Web Search to Math Web ReSearch. In Kauers
et al. [KKMW07], pages 266–279.

[KKMW07] Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang Wind-
steiger, editors. MKM/Calculemus 2007, number 4573 in LNAI. Springer
Verlag, 2007.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical
documents [Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

[KŞ06] Michael Kohlhase and Ioan Şucan. A search engine for mathematical
formulae. In Ida et al. [ICW06], pages 241–253.

[LM06] Paul Libbrecht and Erica Melis. Methods for Access and Retrieval
of Mathematical Content in ActiveMath. In N. Takayama and
A. Iglesias, editors, Proceedings of ICMS-2006, number 4151 in LNAI.
Springer Verlag, 2006. http://www.activemath.org/publications/

Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf.

Rev: 366, March 17, 2008 12 concl.tex

5. CONCLUSIONS AND FUTURE WORK

[Mat07] Math Web Search. Web page at http://kwarc.info/projects/mws/, seen
June 2007.

[MM06] Rajesh Munavalli and Robert Miner. Mathfind: a math-aware search en-
gine. In SIGIR ’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 735–735, New York, NY, USA, 2006. ACM Press.

[NK07] Immanuel Normann and Michael Kohlhase. Extended formula normal-
ization for ε-retrieval and sharing of mathematical knowledge. In Kauers
et al. [KKMW07], pages 266–279.

[Pal06] Alberto González Palomo. Sentido: an authoring environment for OM-
Doc. In OMDoc – An open markup format for mathematical documents
[Version 1.2] [Koh06], chapter 26.3.

[Pes06] Darko Pesikan. Coping with content representations of mathematics in
editor environments: nOMDoc mode. Master’s thesis, Computer Science,
Jacobs University, Bremen, 2006.

[SK] Heinrich Stamerjohanns and Michael Kohlhase. Transforming the arχiv
to xml. submitted to MKM 208.

[The06] The Apache Software Foundation. Lucene. http://lucene.apache.org/,
2000–2006.

[You06] Abdou Youssef. Roles of math search in mathematics. In Jon Borwein
and William M. Farmer, editors, Mathematical Knowledge Management,
MKM’06, number 4108 in LNAI, pages 2–16. Springer Verlag, 2006.

concl.tex 13 Rev: 366, March 17, 2008

